TY - JOUR
T1 - Variable expressivity of BEST1 -associated autosomal dominant vitreoretinochoroidopathy (ADVIRC) in a three-generation pedigree
AU - Da Palma, Mariana Matioli
AU - Vargas, Maurício E.
AU - Burr, Amanda
AU - Chen, Rui
AU - Pennesi, Mark E.
AU - Weleber, Richard G.
AU - Yang, Paul
N1 - Funding Information:
Funding MMP, this study was financed in part by the Coordenação de Aperfeiçoamento de Pessoa de Nível Superior – Brazil (Capes) – Finance Code 001; RC, NIH NEI R01EY022356 and R01EY018571; PY, NIH K08EY026650, Foundation Fighting Blindness Career Development Award CD-NMT-0714–0648; MEP, grants from Foundation Fighting Blindness; other from Allergan/Editas, other from Spark Therapeutics, other from Wave Biosciences, other from Astellas Pharmaceuticals, other from RegenexBio, other from Iveric, other from Biogen, other from Novartis, other from Adverum, other from Gensight, other from ProQR, other from Horama, other from Eyevensys, other from Nayan, personal fees and other from Nacuity, personal fees and other from Ocugen, personal fees and other from Verede, other from Sparing Vision, other from AGTC, other from Sanofi, outside the submitted work. ‘Supported by grant P30 EY010572 from the National Institutes of Health (Bethseda, MD), and by unrestricted departmental funding from Research to Prevent Blindness (New York, NY).’ Competing interests RGW, Oregon Health & Science University, in the name of RGW, holds US patent no. 8657446, Method and apparatus for visual field monitoring, also known as Visual Field Modelling and Analysis or VFMA (P), which is licensed but no royalties have yet accrued to RGW. RGW is on advisory boards for AGTC, Janssen Research and the Foundation Fighting Blindness (F).
Publisher Copyright:
© BMJ Publishing Group Limited 2021.
PY - 2021/10/21
Y1 - 2021/10/21
N2 - Objective Autosomal dominant vitreoretinochoroidopathy (ADVIRC) is associated with pathogenic variants in BEST1, which typically causes visual impairment in the late stage of disease. We present a pedigree with variable expressivity and the youngest case in the literature with visual impairment in early childhood. Methods and analysis This is a retrospective, observational, case series describing multigenerational members of one family affected with ADVIRC. Patients underwent examination, ultra-widefield fundus photography and angiography, optical coherence tomography, full-field electroretinography (ffERG) and full-field perimetry. Results Three affected members of the pedigree, one from each successive generation, were found to harbour a mutation, c.715G>A:p.Val239Met, in BEST1. The proband characterised in this report is, to our knowledge, the youngest documented case of ADVIRC in early childhood. Yet, this patient has the most severe retinal dysfunction compared with the father and paternal grandmother, whom exhibit classic characteristics of ADVIRC. Longitudinal data from the paternal grandmother showed that there was a rapid decline in ffERG responses (photopic decline worse than scotopic) from the fourth to fifth decade of life, which correlated with severe concentric constriction of visual fields. Conclusion This multigenerational case series provides new insights into the ADVIRC disease spectrum and rate of progression. While ADVIRC typically causes a slowly progressive disease, we show that variable phenotypic expressivity is possible among affected members of the same family with the same mutation in BEST1. Thus, ADVIRC must also be considered in the differential diagnosis of paediatric patients with severe retinal dystrophy in early childhood.
AB - Objective Autosomal dominant vitreoretinochoroidopathy (ADVIRC) is associated with pathogenic variants in BEST1, which typically causes visual impairment in the late stage of disease. We present a pedigree with variable expressivity and the youngest case in the literature with visual impairment in early childhood. Methods and analysis This is a retrospective, observational, case series describing multigenerational members of one family affected with ADVIRC. Patients underwent examination, ultra-widefield fundus photography and angiography, optical coherence tomography, full-field electroretinography (ffERG) and full-field perimetry. Results Three affected members of the pedigree, one from each successive generation, were found to harbour a mutation, c.715G>A:p.Val239Met, in BEST1. The proband characterised in this report is, to our knowledge, the youngest documented case of ADVIRC in early childhood. Yet, this patient has the most severe retinal dysfunction compared with the father and paternal grandmother, whom exhibit classic characteristics of ADVIRC. Longitudinal data from the paternal grandmother showed that there was a rapid decline in ffERG responses (photopic decline worse than scotopic) from the fourth to fifth decade of life, which correlated with severe concentric constriction of visual fields. Conclusion This multigenerational case series provides new insights into the ADVIRC disease spectrum and rate of progression. While ADVIRC typically causes a slowly progressive disease, we show that variable phenotypic expressivity is possible among affected members of the same family with the same mutation in BEST1. Thus, ADVIRC must also be considered in the differential diagnosis of paediatric patients with severe retinal dystrophy in early childhood.
KW - Choroid
KW - Electrophysiology
KW - Genetics
KW - Imaging
KW - Retina
UR - http://www.scopus.com/inward/record.url?scp=85118466241&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85118466241&partnerID=8YFLogxK
U2 - 10.1136/bmjophth-2021-000813
DO - 10.1136/bmjophth-2021-000813
M3 - Article
C2 - 34746433
AN - SCOPUS:85118466241
SN - 2397-3269
VL - 6
JO - BMJ Open Ophthalmology
JF - BMJ Open Ophthalmology
IS - 1
M1 - e000813
ER -