Using an obliquely incident laser beam to measure optical properties of turbid media

Lihong V. Wang, Steven L. Jacques

Research output: Chapter in Book/Report/Conference proceedingConference contribution

2 Scopus citations

Abstract

A simple and quick approach was invented to measure optical properties of tissue-like turbid media. A laser beam with oblique incidence to the medium causes the center of the diffuse reflectance that is several transport mean free paths away from the incident point to shift from the point of incedence. The amount of shift is used to compute the reduced scattering coefficient by a simple formula. This formula is a function of the refractive index of the turbid medium divided by that of the incident medium and the angle of incidence off the surface normal for a semi-infinite turbid medium having a much smaller absorption coefficient than the reduced scattering coefficient. For a turbid medium having a comparable absorption coefficient with the reduced scattering coefficient, a revision to the above formula was made. The slope of the diffuse reflectance can be used to compute the penetration depth. Both the computation of the reduced scattering coefficient and penetration depth are based on simple and quick algorithms. the validity condition of the algorithms for slabs of turbid media are studied. This technique has potential for noninvasive, in vivo, real-time diagnosis of disease or monitoring of treatments.

Original languageEnglish (US)
Title of host publicationOptical Tomography, Photon Migration, and Spectroscopy of Tissue and Model Media
Subtitle of host publicationTheory, Human Studies, and Instrumentation
EditorsBritton Chance, Robert R. Alfano
PublisherSPIE
Pages522-532
Number of pages11
ISBN (Electronic)9780819417367
DOIs
StatePublished - May 30 1995
EventOptical Tomography, Photon Migration, and Spectroscopy of Tissue and Model Media: Theory, Human Studies, and Instrumentation - San Jose, United States
Duration: Feb 1 1995Feb 28 1995

Publication series

NameProceedings of SPIE - The International Society for Optical Engineering
Volume2389
ISSN (Print)0277-786X
ISSN (Electronic)1996-756X

Other

OtherOptical Tomography, Photon Migration, and Spectroscopy of Tissue and Model Media: Theory, Human Studies, and Instrumentation
CountryUnited States
CitySan Jose
Period2/1/952/28/95

Keywords

  • Absorption coefficient
  • Monte Carlo simulation
  • Optical properties
  • Reduced scattering coefficient
  • Scattering media
  • Tissue optics
  • Turbid media

ASJC Scopus subject areas

  • Electronic, Optical and Magnetic Materials
  • Condensed Matter Physics
  • Computer Science Applications
  • Applied Mathematics
  • Electrical and Electronic Engineering

Fingerprint Dive into the research topics of 'Using an obliquely incident laser beam to measure optical properties of turbid media'. Together they form a unique fingerprint.

  • Cite this

    Wang, L. V., & Jacques, S. L. (1995). Using an obliquely incident laser beam to measure optical properties of turbid media. In B. Chance, & R. R. Alfano (Eds.), Optical Tomography, Photon Migration, and Spectroscopy of Tissue and Model Media: Theory, Human Studies, and Instrumentation (pp. 522-532). (Proceedings of SPIE - The International Society for Optical Engineering; Vol. 2389). SPIE. https://doi.org/10.1117/12.210001