Thermal expansion coefficient of dental composites measured with strain gauges

Antheunis Versluis, William H. Douglas, Ronald Sakaguchi

Research output: Contribution to journalArticle

89 Citations (Scopus)

Abstract

Objectives. A simple test method was developed to determine the coefficient of thermal expansion of prevailing restorative resin composites and to study the transient behavior as a function of temperature and repeated thermocycles. Methods. Strain gauges were used to determine the thermal expansion for seven commonly used restorative resin composites by measuring the instantaneous strain along with temperature change. The temperature was measured by means of a thermocouple, the tip of which was embedded in the composite. The differences among the test groups were analyzed using ANOVA, followed by Scheffé's multiple comparisons test. Results. The coefficient of thermal expansion determined for the composites tested was: 22.5 ± 1.4 × 10-6/° (Z-100), 23.5 ± 1.4 × 10-6/°C (P-50), 32.6 ± 1.6 × 10-6/°C (Herculite XR), 34.1 ± 1.8 × 10-6/°C (APH), 35.4 ± 1.4 × 10-6/°C (Conquest), 41.6 ± 1.5 × 10-6/°C (Silux Plus), 44.7 ± 1.2 × 10-6/°C (Heliomolar). The coefficient was almost linear in the considered temperature range (26-75°C) for all composites (r > 0.99) and decreased with each consecutive thermocycle (p <0.1). Significance. Thermally induced loads, introduced into restored teeth by the mismatch of the coefficient of thermal expansion of the tooth and the restorative material, may be related to microleakage and wear problems. A highly filled hybrid composite such as Z-100 had a coefficient of thermal expansion closest to that of the tooth crown, confirming other studies which demonstrated the benefits of high filler loading in matching the properties of the dental hard tissues.

Original languageEnglish (US)
Pages (from-to)290-294
Number of pages5
JournalDental Materials
Volume12
Issue number5-6
StatePublished - 1996

Fingerprint

Dental composites
Strain gages
Thermal expansion
Tooth
Hot Temperature
Composite materials
Temperature
Composite Resins
Tooth Crown
Resins
Analysis of variance (ANOVA)
Thermocouples
Fillers
Analysis of Variance
Wear of materials
Tissue

ASJC Scopus subject areas

  • Dentistry(all)

Cite this

Thermal expansion coefficient of dental composites measured with strain gauges. / Versluis, Antheunis; Douglas, William H.; Sakaguchi, Ronald.

In: Dental Materials, Vol. 12, No. 5-6, 1996, p. 290-294.

Research output: Contribution to journalArticle

Versluis, Antheunis ; Douglas, William H. ; Sakaguchi, Ronald. / Thermal expansion coefficient of dental composites measured with strain gauges. In: Dental Materials. 1996 ; Vol. 12, No. 5-6. pp. 290-294.
@article{566bf4891f5c49ab98300f23cbbcc2bc,
title = "Thermal expansion coefficient of dental composites measured with strain gauges",
abstract = "Objectives. A simple test method was developed to determine the coefficient of thermal expansion of prevailing restorative resin composites and to study the transient behavior as a function of temperature and repeated thermocycles. Methods. Strain gauges were used to determine the thermal expansion for seven commonly used restorative resin composites by measuring the instantaneous strain along with temperature change. The temperature was measured by means of a thermocouple, the tip of which was embedded in the composite. The differences among the test groups were analyzed using ANOVA, followed by Scheff{\'e}'s multiple comparisons test. Results. The coefficient of thermal expansion determined for the composites tested was: 22.5 ± 1.4 × 10-6/° (Z-100), 23.5 ± 1.4 × 10-6/°C (P-50), 32.6 ± 1.6 × 10-6/°C (Herculite XR), 34.1 ± 1.8 × 10-6/°C (APH), 35.4 ± 1.4 × 10-6/°C (Conquest), 41.6 ± 1.5 × 10-6/°C (Silux Plus), 44.7 ± 1.2 × 10-6/°C (Heliomolar). The coefficient was almost linear in the considered temperature range (26-75°C) for all composites (r > 0.99) and decreased with each consecutive thermocycle (p <0.1). Significance. Thermally induced loads, introduced into restored teeth by the mismatch of the coefficient of thermal expansion of the tooth and the restorative material, may be related to microleakage and wear problems. A highly filled hybrid composite such as Z-100 had a coefficient of thermal expansion closest to that of the tooth crown, confirming other studies which demonstrated the benefits of high filler loading in matching the properties of the dental hard tissues.",
author = "Antheunis Versluis and Douglas, {William H.} and Ronald Sakaguchi",
year = "1996",
language = "English (US)",
volume = "12",
pages = "290--294",
journal = "Dental Materials",
issn = "0109-5641",
publisher = "Elsevier Science",
number = "5-6",

}

TY - JOUR

T1 - Thermal expansion coefficient of dental composites measured with strain gauges

AU - Versluis, Antheunis

AU - Douglas, William H.

AU - Sakaguchi, Ronald

PY - 1996

Y1 - 1996

N2 - Objectives. A simple test method was developed to determine the coefficient of thermal expansion of prevailing restorative resin composites and to study the transient behavior as a function of temperature and repeated thermocycles. Methods. Strain gauges were used to determine the thermal expansion for seven commonly used restorative resin composites by measuring the instantaneous strain along with temperature change. The temperature was measured by means of a thermocouple, the tip of which was embedded in the composite. The differences among the test groups were analyzed using ANOVA, followed by Scheffé's multiple comparisons test. Results. The coefficient of thermal expansion determined for the composites tested was: 22.5 ± 1.4 × 10-6/° (Z-100), 23.5 ± 1.4 × 10-6/°C (P-50), 32.6 ± 1.6 × 10-6/°C (Herculite XR), 34.1 ± 1.8 × 10-6/°C (APH), 35.4 ± 1.4 × 10-6/°C (Conquest), 41.6 ± 1.5 × 10-6/°C (Silux Plus), 44.7 ± 1.2 × 10-6/°C (Heliomolar). The coefficient was almost linear in the considered temperature range (26-75°C) for all composites (r > 0.99) and decreased with each consecutive thermocycle (p <0.1). Significance. Thermally induced loads, introduced into restored teeth by the mismatch of the coefficient of thermal expansion of the tooth and the restorative material, may be related to microleakage and wear problems. A highly filled hybrid composite such as Z-100 had a coefficient of thermal expansion closest to that of the tooth crown, confirming other studies which demonstrated the benefits of high filler loading in matching the properties of the dental hard tissues.

AB - Objectives. A simple test method was developed to determine the coefficient of thermal expansion of prevailing restorative resin composites and to study the transient behavior as a function of temperature and repeated thermocycles. Methods. Strain gauges were used to determine the thermal expansion for seven commonly used restorative resin composites by measuring the instantaneous strain along with temperature change. The temperature was measured by means of a thermocouple, the tip of which was embedded in the composite. The differences among the test groups were analyzed using ANOVA, followed by Scheffé's multiple comparisons test. Results. The coefficient of thermal expansion determined for the composites tested was: 22.5 ± 1.4 × 10-6/° (Z-100), 23.5 ± 1.4 × 10-6/°C (P-50), 32.6 ± 1.6 × 10-6/°C (Herculite XR), 34.1 ± 1.8 × 10-6/°C (APH), 35.4 ± 1.4 × 10-6/°C (Conquest), 41.6 ± 1.5 × 10-6/°C (Silux Plus), 44.7 ± 1.2 × 10-6/°C (Heliomolar). The coefficient was almost linear in the considered temperature range (26-75°C) for all composites (r > 0.99) and decreased with each consecutive thermocycle (p <0.1). Significance. Thermally induced loads, introduced into restored teeth by the mismatch of the coefficient of thermal expansion of the tooth and the restorative material, may be related to microleakage and wear problems. A highly filled hybrid composite such as Z-100 had a coefficient of thermal expansion closest to that of the tooth crown, confirming other studies which demonstrated the benefits of high filler loading in matching the properties of the dental hard tissues.

UR - http://www.scopus.com/inward/record.url?scp=0030225248&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=0030225248&partnerID=8YFLogxK

M3 - Article

C2 - 9170996

AN - SCOPUS:0030225248

VL - 12

SP - 290

EP - 294

JO - Dental Materials

JF - Dental Materials

SN - 0109-5641

IS - 5-6

ER -