The synaptic and morphological basis of orientation selectivity in a polyaxonal amacrine cell of the rabbit retina

Benjamin L. Murphy-Baum, W. Rowland Taylor

Research output: Contribution to journalArticlepeer-review

14 Scopus citations


Much of the computational power of the retina derives from the activity of amacrine cells, a large and diverse group of GABAergic and glycinergic inhibitory interneurons. Here, we identify an ON-type orientation-selective, wide-field, polyaxonal amacrine cell (PAC) in the rabbit retina and demonstrate how its orientation selectivity arises from the structure of the dendritic arbor and the pattern of excitatory and inhibitory inputs. Excitation from ON bipolar cells and inhibition arising from the OFF pathway converge to generate a quasi-linear integration of visual signals in the receptive field center. This serves to suppress responses to high spatial frequencies, thereby improving sensitivity to larger objects and enhancing orientation selectivity. Inhibition also regulates the magnitude and time course of excitatory inputs to this PAC through serial inhibitory connections onto the presynaptic terminals of ON bipolar cells. This presynaptic inhibition is driven by graded potentials within local microcircuits, similar in extent to the size of single bipolar cell receptive fields. Additional presynaptic inhibition is generated by spiking amacrine cells on a larger spatial scale covering several hundred microns. The orientation selectivity of this PAC may be a substrate for the inhibition that mediates orientation selectivity in some types of ganglion cells.

Original languageEnglish (US)
Pages (from-to)13336-13350
Number of pages15
JournalJournal of Neuroscience
Issue number39
StatePublished - Sep 30 2015
Externally publishedYes


  • Amacrine cell
  • Neural circuits
  • Orientation selectivity
  • Receptive field
  • Retina
  • Synaptic transmission

ASJC Scopus subject areas

  • Neuroscience(all)


Dive into the research topics of 'The synaptic and morphological basis of orientation selectivity in a polyaxonal amacrine cell of the rabbit retina'. Together they form a unique fingerprint.

Cite this