The Multimodal Brain Tumor Image Segmentation Benchmark (BRATS)

Bjoern H. Menze, Andras Jakab, Stefan Bauer, Jayashree Kalpathy-Cramer, Keyvan Farahani, Justin Kirby, Yuliya Burren, Nicole Porz, Johannes Slotboom, Roland Wiest, Levente Lanczi, Elizabeth Gerstner, Marc André Weber, Tal Arbel, Brian B. Avants, Nicholas Ayache, Patricia Buendia, D. Louis Collins, Nicolas Cordier, Jason J. CorsoAntonio Criminisi, Tilak Das, Hervé Delingette, Çağatay Demiralp, Christopher R. Durst, Michel Dojat, Senan Doyle, Joana Festa, Florence Forbes, Ezequiel Geremia, Ben Glocker, Polina Golland, Xiaotao Guo, Andac Hamamci, Khan M. Iftekharuddin, Raj Jena, Nigel M. John, Ender Konukoglu, Danial Lashkari, José António Mariz, Raphael Meier, Sérgio Pereira, Doina Precup, Stephen J. Price, Tammy Riklin Raviv, Syed M S Reza, Michael Ryan, Duygu Sarikaya, Lawrence Schwartz, Hoo Chang Shin, Jamie Shotton, Carlos A. Silva, Nuno Sousa, Nagesh K. Subbanna, Gabor Szekely, Thomas J. Taylor, Owen M. Thomas, Nicholas J. Tustison, Gozde Unal, Flor Vasseur, Max Wintermark, Dong Hye Ye, Liang Zhao, Binsheng Zhao, Darko Zikic, Marcel Prastawa, Mauricio Reyes, Koen Van Leemput

Research output: Contribution to journalArticle

855 Citations (Scopus)

Abstract

In this paper we report the set-up and results of the Multimodal Brain Tumor Image Segmentation Benchmark (BRATS) organized in conjunction with the MICCAI 2012 and 2013 conferences. Twenty state-of-the-art tumor segmentation algorithms were applied to a set of 65 multi-contrast MR scans of low- and high-grade glioma patients - manually annotated by up to four raters - and to 65 comparable scans generated using tumor image simulation software. Quantitative evaluations revealed considerable disagreement between the human raters in segmenting various tumor sub-regions (Dice scores in the range 74%-85%), illustrating the difficulty of this task. We found that different algorithms worked best for different sub-regions (reaching performance comparable to human inter-rater variability), but that no single algorithm ranked in the top for all sub-regions simultaneously. Fusing several good algorithms using a hierarchical majority vote yielded segmentations that consistently ranked above all individual algorithms, indicating remaining opportunities for further methodological improvements. The BRATS image data and manual annotations continue to be publicly available through an online evaluation system as an ongoing benchmarking resource.

Original languageEnglish (US)
Article number2377694
Pages (from-to)1993-2024
Number of pages32
JournalIEEE Transactions on Medical Imaging
Volume34
Issue number10
DOIs
StatePublished - Oct 1 2015
Externally publishedYes

Fingerprint

Benchmarking
Image segmentation
Brain Neoplasms
Tumors
Brain
Online Systems
Neoplasms
Glioma
Software

Keywords

  • Benchmark
  • Brain
  • Image segmentation
  • MRI
  • Oncology/tumor

ASJC Scopus subject areas

  • Electrical and Electronic Engineering
  • Computer Science Applications
  • Radiological and Ultrasound Technology
  • Software

Cite this

Menze, B. H., Jakab, A., Bauer, S., Kalpathy-Cramer, J., Farahani, K., Kirby, J., ... Van Leemput, K. (2015). The Multimodal Brain Tumor Image Segmentation Benchmark (BRATS). IEEE Transactions on Medical Imaging, 34(10), 1993-2024. [2377694]. https://doi.org/10.1109/TMI.2014.2377694

The Multimodal Brain Tumor Image Segmentation Benchmark (BRATS). / Menze, Bjoern H.; Jakab, Andras; Bauer, Stefan; Kalpathy-Cramer, Jayashree; Farahani, Keyvan; Kirby, Justin; Burren, Yuliya; Porz, Nicole; Slotboom, Johannes; Wiest, Roland; Lanczi, Levente; Gerstner, Elizabeth; Weber, Marc André; Arbel, Tal; Avants, Brian B.; Ayache, Nicholas; Buendia, Patricia; Collins, D. Louis; Cordier, Nicolas; Corso, Jason J.; Criminisi, Antonio; Das, Tilak; Delingette, Hervé; Demiralp, Çağatay; Durst, Christopher R.; Dojat, Michel; Doyle, Senan; Festa, Joana; Forbes, Florence; Geremia, Ezequiel; Glocker, Ben; Golland, Polina; Guo, Xiaotao; Hamamci, Andac; Iftekharuddin, Khan M.; Jena, Raj; John, Nigel M.; Konukoglu, Ender; Lashkari, Danial; Mariz, José António; Meier, Raphael; Pereira, Sérgio; Precup, Doina; Price, Stephen J.; Raviv, Tammy Riklin; Reza, Syed M S; Ryan, Michael; Sarikaya, Duygu; Schwartz, Lawrence; Shin, Hoo Chang; Shotton, Jamie; Silva, Carlos A.; Sousa, Nuno; Subbanna, Nagesh K.; Szekely, Gabor; Taylor, Thomas J.; Thomas, Owen M.; Tustison, Nicholas J.; Unal, Gozde; Vasseur, Flor; Wintermark, Max; Ye, Dong Hye; Zhao, Liang; Zhao, Binsheng; Zikic, Darko; Prastawa, Marcel; Reyes, Mauricio; Van Leemput, Koen.

In: IEEE Transactions on Medical Imaging, Vol. 34, No. 10, 2377694, 01.10.2015, p. 1993-2024.

Research output: Contribution to journalArticle

Menze, BH, Jakab, A, Bauer, S, Kalpathy-Cramer, J, Farahani, K, Kirby, J, Burren, Y, Porz, N, Slotboom, J, Wiest, R, Lanczi, L, Gerstner, E, Weber, MA, Arbel, T, Avants, BB, Ayache, N, Buendia, P, Collins, DL, Cordier, N, Corso, JJ, Criminisi, A, Das, T, Delingette, H, Demiralp, Ç, Durst, CR, Dojat, M, Doyle, S, Festa, J, Forbes, F, Geremia, E, Glocker, B, Golland, P, Guo, X, Hamamci, A, Iftekharuddin, KM, Jena, R, John, NM, Konukoglu, E, Lashkari, D, Mariz, JA, Meier, R, Pereira, S, Precup, D, Price, SJ, Raviv, TR, Reza, SMS, Ryan, M, Sarikaya, D, Schwartz, L, Shin, HC, Shotton, J, Silva, CA, Sousa, N, Subbanna, NK, Szekely, G, Taylor, TJ, Thomas, OM, Tustison, NJ, Unal, G, Vasseur, F, Wintermark, M, Ye, DH, Zhao, L, Zhao, B, Zikic, D, Prastawa, M, Reyes, M & Van Leemput, K 2015, 'The Multimodal Brain Tumor Image Segmentation Benchmark (BRATS)', IEEE Transactions on Medical Imaging, vol. 34, no. 10, 2377694, pp. 1993-2024. https://doi.org/10.1109/TMI.2014.2377694
Menze BH, Jakab A, Bauer S, Kalpathy-Cramer J, Farahani K, Kirby J et al. The Multimodal Brain Tumor Image Segmentation Benchmark (BRATS). IEEE Transactions on Medical Imaging. 2015 Oct 1;34(10):1993-2024. 2377694. https://doi.org/10.1109/TMI.2014.2377694
Menze, Bjoern H. ; Jakab, Andras ; Bauer, Stefan ; Kalpathy-Cramer, Jayashree ; Farahani, Keyvan ; Kirby, Justin ; Burren, Yuliya ; Porz, Nicole ; Slotboom, Johannes ; Wiest, Roland ; Lanczi, Levente ; Gerstner, Elizabeth ; Weber, Marc André ; Arbel, Tal ; Avants, Brian B. ; Ayache, Nicholas ; Buendia, Patricia ; Collins, D. Louis ; Cordier, Nicolas ; Corso, Jason J. ; Criminisi, Antonio ; Das, Tilak ; Delingette, Hervé ; Demiralp, Çağatay ; Durst, Christopher R. ; Dojat, Michel ; Doyle, Senan ; Festa, Joana ; Forbes, Florence ; Geremia, Ezequiel ; Glocker, Ben ; Golland, Polina ; Guo, Xiaotao ; Hamamci, Andac ; Iftekharuddin, Khan M. ; Jena, Raj ; John, Nigel M. ; Konukoglu, Ender ; Lashkari, Danial ; Mariz, José António ; Meier, Raphael ; Pereira, Sérgio ; Precup, Doina ; Price, Stephen J. ; Raviv, Tammy Riklin ; Reza, Syed M S ; Ryan, Michael ; Sarikaya, Duygu ; Schwartz, Lawrence ; Shin, Hoo Chang ; Shotton, Jamie ; Silva, Carlos A. ; Sousa, Nuno ; Subbanna, Nagesh K. ; Szekely, Gabor ; Taylor, Thomas J. ; Thomas, Owen M. ; Tustison, Nicholas J. ; Unal, Gozde ; Vasseur, Flor ; Wintermark, Max ; Ye, Dong Hye ; Zhao, Liang ; Zhao, Binsheng ; Zikic, Darko ; Prastawa, Marcel ; Reyes, Mauricio ; Van Leemput, Koen. / The Multimodal Brain Tumor Image Segmentation Benchmark (BRATS). In: IEEE Transactions on Medical Imaging. 2015 ; Vol. 34, No. 10. pp. 1993-2024.
@article{6d57754b27f2493d8f5e9c94a80d3328,
title = "The Multimodal Brain Tumor Image Segmentation Benchmark (BRATS)",
abstract = "In this paper we report the set-up and results of the Multimodal Brain Tumor Image Segmentation Benchmark (BRATS) organized in conjunction with the MICCAI 2012 and 2013 conferences. Twenty state-of-the-art tumor segmentation algorithms were applied to a set of 65 multi-contrast MR scans of low- and high-grade glioma patients - manually annotated by up to four raters - and to 65 comparable scans generated using tumor image simulation software. Quantitative evaluations revealed considerable disagreement between the human raters in segmenting various tumor sub-regions (Dice scores in the range 74{\%}-85{\%}), illustrating the difficulty of this task. We found that different algorithms worked best for different sub-regions (reaching performance comparable to human inter-rater variability), but that no single algorithm ranked in the top for all sub-regions simultaneously. Fusing several good algorithms using a hierarchical majority vote yielded segmentations that consistently ranked above all individual algorithms, indicating remaining opportunities for further methodological improvements. The BRATS image data and manual annotations continue to be publicly available through an online evaluation system as an ongoing benchmarking resource.",
keywords = "Benchmark, Brain, Image segmentation, MRI, Oncology/tumor",
author = "Menze, {Bjoern H.} and Andras Jakab and Stefan Bauer and Jayashree Kalpathy-Cramer and Keyvan Farahani and Justin Kirby and Yuliya Burren and Nicole Porz and Johannes Slotboom and Roland Wiest and Levente Lanczi and Elizabeth Gerstner and Weber, {Marc Andr{\'e}} and Tal Arbel and Avants, {Brian B.} and Nicholas Ayache and Patricia Buendia and Collins, {D. Louis} and Nicolas Cordier and Corso, {Jason J.} and Antonio Criminisi and Tilak Das and Herv{\'e} Delingette and {\cC}ağatay Demiralp and Durst, {Christopher R.} and Michel Dojat and Senan Doyle and Joana Festa and Florence Forbes and Ezequiel Geremia and Ben Glocker and Polina Golland and Xiaotao Guo and Andac Hamamci and Iftekharuddin, {Khan M.} and Raj Jena and John, {Nigel M.} and Ender Konukoglu and Danial Lashkari and Mariz, {Jos{\'e} Ant{\'o}nio} and Raphael Meier and S{\'e}rgio Pereira and Doina Precup and Price, {Stephen J.} and Raviv, {Tammy Riklin} and Reza, {Syed M S} and Michael Ryan and Duygu Sarikaya and Lawrence Schwartz and Shin, {Hoo Chang} and Jamie Shotton and Silva, {Carlos A.} and Nuno Sousa and Subbanna, {Nagesh K.} and Gabor Szekely and Taylor, {Thomas J.} and Thomas, {Owen M.} and Tustison, {Nicholas J.} and Gozde Unal and Flor Vasseur and Max Wintermark and Ye, {Dong Hye} and Liang Zhao and Binsheng Zhao and Darko Zikic and Marcel Prastawa and Mauricio Reyes and {Van Leemput}, Koen",
year = "2015",
month = "10",
day = "1",
doi = "10.1109/TMI.2014.2377694",
language = "English (US)",
volume = "34",
pages = "1993--2024",
journal = "IEEE Transactions on Medical Imaging",
issn = "0278-0062",
publisher = "Institute of Electrical and Electronics Engineers Inc.",
number = "10",

}

TY - JOUR

T1 - The Multimodal Brain Tumor Image Segmentation Benchmark (BRATS)

AU - Menze, Bjoern H.

AU - Jakab, Andras

AU - Bauer, Stefan

AU - Kalpathy-Cramer, Jayashree

AU - Farahani, Keyvan

AU - Kirby, Justin

AU - Burren, Yuliya

AU - Porz, Nicole

AU - Slotboom, Johannes

AU - Wiest, Roland

AU - Lanczi, Levente

AU - Gerstner, Elizabeth

AU - Weber, Marc André

AU - Arbel, Tal

AU - Avants, Brian B.

AU - Ayache, Nicholas

AU - Buendia, Patricia

AU - Collins, D. Louis

AU - Cordier, Nicolas

AU - Corso, Jason J.

AU - Criminisi, Antonio

AU - Das, Tilak

AU - Delingette, Hervé

AU - Demiralp, Çağatay

AU - Durst, Christopher R.

AU - Dojat, Michel

AU - Doyle, Senan

AU - Festa, Joana

AU - Forbes, Florence

AU - Geremia, Ezequiel

AU - Glocker, Ben

AU - Golland, Polina

AU - Guo, Xiaotao

AU - Hamamci, Andac

AU - Iftekharuddin, Khan M.

AU - Jena, Raj

AU - John, Nigel M.

AU - Konukoglu, Ender

AU - Lashkari, Danial

AU - Mariz, José António

AU - Meier, Raphael

AU - Pereira, Sérgio

AU - Precup, Doina

AU - Price, Stephen J.

AU - Raviv, Tammy Riklin

AU - Reza, Syed M S

AU - Ryan, Michael

AU - Sarikaya, Duygu

AU - Schwartz, Lawrence

AU - Shin, Hoo Chang

AU - Shotton, Jamie

AU - Silva, Carlos A.

AU - Sousa, Nuno

AU - Subbanna, Nagesh K.

AU - Szekely, Gabor

AU - Taylor, Thomas J.

AU - Thomas, Owen M.

AU - Tustison, Nicholas J.

AU - Unal, Gozde

AU - Vasseur, Flor

AU - Wintermark, Max

AU - Ye, Dong Hye

AU - Zhao, Liang

AU - Zhao, Binsheng

AU - Zikic, Darko

AU - Prastawa, Marcel

AU - Reyes, Mauricio

AU - Van Leemput, Koen

PY - 2015/10/1

Y1 - 2015/10/1

N2 - In this paper we report the set-up and results of the Multimodal Brain Tumor Image Segmentation Benchmark (BRATS) organized in conjunction with the MICCAI 2012 and 2013 conferences. Twenty state-of-the-art tumor segmentation algorithms were applied to a set of 65 multi-contrast MR scans of low- and high-grade glioma patients - manually annotated by up to four raters - and to 65 comparable scans generated using tumor image simulation software. Quantitative evaluations revealed considerable disagreement between the human raters in segmenting various tumor sub-regions (Dice scores in the range 74%-85%), illustrating the difficulty of this task. We found that different algorithms worked best for different sub-regions (reaching performance comparable to human inter-rater variability), but that no single algorithm ranked in the top for all sub-regions simultaneously. Fusing several good algorithms using a hierarchical majority vote yielded segmentations that consistently ranked above all individual algorithms, indicating remaining opportunities for further methodological improvements. The BRATS image data and manual annotations continue to be publicly available through an online evaluation system as an ongoing benchmarking resource.

AB - In this paper we report the set-up and results of the Multimodal Brain Tumor Image Segmentation Benchmark (BRATS) organized in conjunction with the MICCAI 2012 and 2013 conferences. Twenty state-of-the-art tumor segmentation algorithms were applied to a set of 65 multi-contrast MR scans of low- and high-grade glioma patients - manually annotated by up to four raters - and to 65 comparable scans generated using tumor image simulation software. Quantitative evaluations revealed considerable disagreement between the human raters in segmenting various tumor sub-regions (Dice scores in the range 74%-85%), illustrating the difficulty of this task. We found that different algorithms worked best for different sub-regions (reaching performance comparable to human inter-rater variability), but that no single algorithm ranked in the top for all sub-regions simultaneously. Fusing several good algorithms using a hierarchical majority vote yielded segmentations that consistently ranked above all individual algorithms, indicating remaining opportunities for further methodological improvements. The BRATS image data and manual annotations continue to be publicly available through an online evaluation system as an ongoing benchmarking resource.

KW - Benchmark

KW - Brain

KW - Image segmentation

KW - MRI

KW - Oncology/tumor

UR - http://www.scopus.com/inward/record.url?scp=84949210409&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=84949210409&partnerID=8YFLogxK

U2 - 10.1109/TMI.2014.2377694

DO - 10.1109/TMI.2014.2377694

M3 - Article

C2 - 25494501

AN - SCOPUS:84949210409

VL - 34

SP - 1993

EP - 2024

JO - IEEE Transactions on Medical Imaging

JF - IEEE Transactions on Medical Imaging

SN - 0278-0062

IS - 10

M1 - 2377694

ER -