The development of melanopsin-containing retinal ganglion cells in mice with early retinal degeneration

Linda Ruggiero, Charles N. Allen, R. Lane Brown, David W. Robinson

Research output: Contribution to journalArticlepeer-review

15 Scopus citations

Abstract

In mammals, the neuronal pathways by which rod and cone photoreceptors mediate vision have been well documented. The roles that classical photoreceptors play in photoentrainment, however, have been less clear. In mammals, intrinsically photosensitive retinal ganglion cells (ipRGCs) that express the photopigment melanopsin project directly to the suprachiasmatic nucleus of the hypothalamus, the site of the circadian clock, and thereby contribute to non-image-forming responses to light. Classical photoreceptors are not necessary for photoentrainment as loss of rods and cones does not eliminate light entrainment. Conflicting evidence arose, however, when attenuated phase-shifting responses were observed in the retinal-degenerate CBA/J mouse. In this study, we examined the time course of retinal degeneration in CBA/J mice and used these animals to determine if maturation of the outer retina regulates the morphology, number and distribution of ipRGCs. We also examined whether degeneration during the early development of the outer retina can alter the function of the adult circadian system. We report that dendritic stratification and distribution of ipRGCs was unaltered in mice with early retinal degeneration, suggesting that normal development of the outer retina was not necessary for these processes. We found, however, that adult CBA/J mice have greater numbers of ipRGCs than controls, implicating a role for the outer retinal photoreceptors in regulating developmental cell death of ipRGCs.

Original languageEnglish (US)
Pages (from-to)359-367
Number of pages9
JournalEuropean Journal of Neuroscience
Volume29
Issue number2
DOIs
StatePublished - Jan 2009

Keywords

  • Circadian rhythms
  • Dendritic stratification
  • Photoentrainment
  • Photoreceptor cells
  • SCN

ASJC Scopus subject areas

  • General Neuroscience

Fingerprint

Dive into the research topics of 'The development of melanopsin-containing retinal ganglion cells in mice with early retinal degeneration'. Together they form a unique fingerprint.

Cite this