Seasonal pelage changes are synchronized by simulated natural photoperiods in Siberian hamsters (Phodopus sungorus)

Matthew Butler, Irving Zucker

Research output: Contribution to journalArticle

7 Citations (Scopus)

Abstract

The extent to which changing day lengths (DLs) synchronize the seasonal molt was assessed in nine cohorts of male and female Siberian hamsters (Phodopus sungorus) born into a simulated natural photoperiod (SNP) beginning 4 weeks before and ending 12 weeks after the summer solstice. Hamsters in early cohorts displayed rapid somatic and gonadal growth and early puberty, whereas those in later cohorts delayed puberty until the next spring. Despite the varying birth dates and puberty strategies, the seasonal pattern of change in pelage is much better predicted by calendar date than by age in both sexes. Males born over the course of 16 weeks first made the transition to the winter pelage during a 5-week interval beginning on October 25; the autumn molt, however, was not significantly synchronized by either age or calendar date. The autumn molt of females on the other hand began 2 weeks later, and was significantly synchronized to calendar date with no detectable age effects. In both sexes, the autumn molt lagged gonadal and somatic seasonal changes by many weeks. Date of birth did not affect the timing of the spring molt, which was significantly synchronized by calendar date in both sexes. Incrementally changing photoperiods exert a strong organizing effect on the seasonal molt by providing hamsters with timing cues that are absent in laboratory analyses that employ static DLs and abrupt transitions from summer to winter DLs, thereby extending and validating conclusions derived from previous analyses.

Original languageEnglish (US)
Pages (from-to)475-482
Number of pages8
JournalJournal of Experimental Zoology Part A: Ecological Genetics and Physiology
Volume311
Issue number7
DOIs
StatePublished - Aug 2009
Externally publishedYes

Fingerprint

Phodopus
pelage
Photoperiod
molt
photoperiod
hamsters
molting
Puberty
Cricetinae
day length
puberty
Parturition
Delayed Puberty
autumn
Cues
gender
birth date
winter
summer
Growth

ASJC Scopus subject areas

  • Animal Science and Zoology
  • Ecology, Evolution, Behavior and Systematics
  • Genetics
  • Physiology
  • Molecular Biology

Cite this

@article{a137ae2711a94df28e287c615289e790,
title = "Seasonal pelage changes are synchronized by simulated natural photoperiods in Siberian hamsters (Phodopus sungorus)",
abstract = "The extent to which changing day lengths (DLs) synchronize the seasonal molt was assessed in nine cohorts of male and female Siberian hamsters (Phodopus sungorus) born into a simulated natural photoperiod (SNP) beginning 4 weeks before and ending 12 weeks after the summer solstice. Hamsters in early cohorts displayed rapid somatic and gonadal growth and early puberty, whereas those in later cohorts delayed puberty until the next spring. Despite the varying birth dates and puberty strategies, the seasonal pattern of change in pelage is much better predicted by calendar date than by age in both sexes. Males born over the course of 16 weeks first made the transition to the winter pelage during a 5-week interval beginning on October 25; the autumn molt, however, was not significantly synchronized by either age or calendar date. The autumn molt of females on the other hand began 2 weeks later, and was significantly synchronized to calendar date with no detectable age effects. In both sexes, the autumn molt lagged gonadal and somatic seasonal changes by many weeks. Date of birth did not affect the timing of the spring molt, which was significantly synchronized by calendar date in both sexes. Incrementally changing photoperiods exert a strong organizing effect on the seasonal molt by providing hamsters with timing cues that are absent in laboratory analyses that employ static DLs and abrupt transitions from summer to winter DLs, thereby extending and validating conclusions derived from previous analyses.",
author = "Matthew Butler and Irving Zucker",
year = "2009",
month = "8",
doi = "10.1002/jez.544",
language = "English (US)",
volume = "311",
pages = "475--482",
journal = "Journal of Experimental Zoology Part A: Ecological Genetics and Physiology",
issn = "1932-5223",
publisher = "John Wiley and Sons Inc.",
number = "7",

}

TY - JOUR

T1 - Seasonal pelage changes are synchronized by simulated natural photoperiods in Siberian hamsters (Phodopus sungorus)

AU - Butler, Matthew

AU - Zucker, Irving

PY - 2009/8

Y1 - 2009/8

N2 - The extent to which changing day lengths (DLs) synchronize the seasonal molt was assessed in nine cohorts of male and female Siberian hamsters (Phodopus sungorus) born into a simulated natural photoperiod (SNP) beginning 4 weeks before and ending 12 weeks after the summer solstice. Hamsters in early cohorts displayed rapid somatic and gonadal growth and early puberty, whereas those in later cohorts delayed puberty until the next spring. Despite the varying birth dates and puberty strategies, the seasonal pattern of change in pelage is much better predicted by calendar date than by age in both sexes. Males born over the course of 16 weeks first made the transition to the winter pelage during a 5-week interval beginning on October 25; the autumn molt, however, was not significantly synchronized by either age or calendar date. The autumn molt of females on the other hand began 2 weeks later, and was significantly synchronized to calendar date with no detectable age effects. In both sexes, the autumn molt lagged gonadal and somatic seasonal changes by many weeks. Date of birth did not affect the timing of the spring molt, which was significantly synchronized by calendar date in both sexes. Incrementally changing photoperiods exert a strong organizing effect on the seasonal molt by providing hamsters with timing cues that are absent in laboratory analyses that employ static DLs and abrupt transitions from summer to winter DLs, thereby extending and validating conclusions derived from previous analyses.

AB - The extent to which changing day lengths (DLs) synchronize the seasonal molt was assessed in nine cohorts of male and female Siberian hamsters (Phodopus sungorus) born into a simulated natural photoperiod (SNP) beginning 4 weeks before and ending 12 weeks after the summer solstice. Hamsters in early cohorts displayed rapid somatic and gonadal growth and early puberty, whereas those in later cohorts delayed puberty until the next spring. Despite the varying birth dates and puberty strategies, the seasonal pattern of change in pelage is much better predicted by calendar date than by age in both sexes. Males born over the course of 16 weeks first made the transition to the winter pelage during a 5-week interval beginning on October 25; the autumn molt, however, was not significantly synchronized by either age or calendar date. The autumn molt of females on the other hand began 2 weeks later, and was significantly synchronized to calendar date with no detectable age effects. In both sexes, the autumn molt lagged gonadal and somatic seasonal changes by many weeks. Date of birth did not affect the timing of the spring molt, which was significantly synchronized by calendar date in both sexes. Incrementally changing photoperiods exert a strong organizing effect on the seasonal molt by providing hamsters with timing cues that are absent in laboratory analyses that employ static DLs and abrupt transitions from summer to winter DLs, thereby extending and validating conclusions derived from previous analyses.

UR - http://www.scopus.com/inward/record.url?scp=69249171981&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=69249171981&partnerID=8YFLogxK

U2 - 10.1002/jez.544

DO - 10.1002/jez.544

M3 - Article

VL - 311

SP - 475

EP - 482

JO - Journal of Experimental Zoology Part A: Ecological Genetics and Physiology

JF - Journal of Experimental Zoology Part A: Ecological Genetics and Physiology

SN - 1932-5223

IS - 7

ER -