TY - JOUR
T1 - Salivary protein glycosylation as a noninvasive biomarker for assessment of glycemia
AU - Rao, Paturi V.
AU - Laurie, Amber
AU - Bean, Eric S.
AU - Roberts, Charles T.
AU - Nagalla, Srinivasa R.
N1 - Publisher Copyright:
© 2015 Diabetes Technology Society.
Copyright:
Copyright 2015 Elsevier B.V., All rights reserved.
PY - 2015/1/1
Y1 - 2015/1/1
N2 - Background: Assessment of short-term glycemic control can facilitate monitoring of diabetes development in at-risk individuals and monitoring response to lifestyle modification or medication. We evaluated salivary protein glycosylation levels as a novel, noninvasive, short-term glycemic index in comparison to hemoglobin A1c (HbA1c), fructosamine, 1,5-Anhydroglucitol (1,5-AG), and continuous glucose monitoring (CGM). Methods: Ten subjects with type 2 diabetes were monitored by CGM and saliva and blood were collected at baseline and days 1, 7, 14, 21, and 28 for determination of salivary protein glycosylation, serum fructosamine, and serum 1,5-Anhydroglucitol (1,5-AG) levels, as well as HbA1c (baseline and day 28). Weekly, 14-day, 21-day, and 28-day summary blood glucose measures from CGM were computed and matched to the time of each study visit. Results: Salivary protein glycosylation exhibited a moderate correlation with fructosamine (r = .65) and 1,5-AG (r = -.48) at baseline, and weak correlation with HbA1c (r = .3). Conclusions: Salivary protein glycosylation exhibited a stronger correlation than fructosamine and 1,5-AG with 7-, 14-, and 21-day average BG (r = .84, .84, and .69, respectively, vs -.37, -.28, and .00 [fructosamine] and .00, -.21, and -.57 [1,5-AG]), maximum BG (r = .79, .76, and .53 vs -.09, -.21, and -.05 [fructosamine] and -.32, -.27, and -.52 [1,5-AG]), and percentage of time over 140 mg/dL (r = .87, .79, and .59 vs -.26, -.32, and .07 [fructosamine] and -.04, -.10, and -.50 [1,5-AG]). Salivary protein glycosylation represents a promising noninvasive technology for monitoring short-term glycemic control.
AB - Background: Assessment of short-term glycemic control can facilitate monitoring of diabetes development in at-risk individuals and monitoring response to lifestyle modification or medication. We evaluated salivary protein glycosylation levels as a novel, noninvasive, short-term glycemic index in comparison to hemoglobin A1c (HbA1c), fructosamine, 1,5-Anhydroglucitol (1,5-AG), and continuous glucose monitoring (CGM). Methods: Ten subjects with type 2 diabetes were monitored by CGM and saliva and blood were collected at baseline and days 1, 7, 14, 21, and 28 for determination of salivary protein glycosylation, serum fructosamine, and serum 1,5-Anhydroglucitol (1,5-AG) levels, as well as HbA1c (baseline and day 28). Weekly, 14-day, 21-day, and 28-day summary blood glucose measures from CGM were computed and matched to the time of each study visit. Results: Salivary protein glycosylation exhibited a moderate correlation with fructosamine (r = .65) and 1,5-AG (r = -.48) at baseline, and weak correlation with HbA1c (r = .3). Conclusions: Salivary protein glycosylation exhibited a stronger correlation than fructosamine and 1,5-AG with 7-, 14-, and 21-day average BG (r = .84, .84, and .69, respectively, vs -.37, -.28, and .00 [fructosamine] and .00, -.21, and -.57 [1,5-AG]), maximum BG (r = .79, .76, and .53 vs -.09, -.21, and -.05 [fructosamine] and -.32, -.27, and -.52 [1,5-AG]), and percentage of time over 140 mg/dL (r = .87, .79, and .59 vs -.26, -.32, and .07 [fructosamine] and -.04, -.10, and -.50 [1,5-AG]). Salivary protein glycosylation represents a promising noninvasive technology for monitoring short-term glycemic control.
KW - continuous glucose monitoring
KW - fructosamine
KW - glycosylation
KW - hemoglobin A1c
KW - saliva
UR - http://www.scopus.com/inward/record.url?scp=84947903785&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=84947903785&partnerID=8YFLogxK
U2 - 10.1177/1932296814554414
DO - 10.1177/1932296814554414
M3 - Article
C2 - 25305283
AN - SCOPUS:84947903785
VL - 9
SP - 97
EP - 104
JO - Journal of diabetes science and technology
JF - Journal of diabetes science and technology
SN - 1932-2968
IS - 1
ER -