Role of Pseudomonas aeruginosa ExsA in Penetration through Corneal Epithelium in a Novel In Vivo Model

Ellen J. Lee, David J. Evans, Suzanne M.J. Fleiszig

Research output: Contribution to journalArticle

45 Scopus citations

Abstract

PURPOSE. The scarified cornea keratitis model was modified to study Pseudomonas aeruginosa infection of healing corneal epithelium. The new model was then used to study the role of ExsA, a transcriptional activator of P. aeruginosa, in bacterial penetration through injured and healing corneal epithelia. METHODS. Scratch-injured corneas of C57BL/6 mice were allowed to heal for 0, 6, 9, or 12 hours before inoculation with a cytotoxic (6206) or invasive (PAO1) P. aeruginosa strain. Disease progression was monitored for 14 days. The integrity of the healing epithelium was studied in uninfected eyes by fluorescein staining and by histologic examination. In other experiments, the effect of bacterial exsA mutation was studied after 0, 6, or 12 hours of healing. Three hours after infection, these eyes were used to quantify early bacterial colonization levels by viable counts, or they were sectioned to study bacterial penetration through the epithelium by microscopy. RESULTS. Corneas remained susceptible to infection 6 but not 12 hours after scratch injury. By 6 hours, the previously exposed stroma was already completely covered by several layers of epithelial cells. Fluorescein staining unexpectedly occurred even after 12 hours of healing time, showing that resistance to infection preceded full restoration of epithelial barrier function. Mutation of exsA reduced both bacterial colonization levels and penetration through the epithelium 3 hours after bacterial inoculation, but only in the 6-hour healing situation, and only for the cytotoxic strain (PA103). Mutation of exsA in the invasive strain (PAO1) had no effect on 3-hour colonization or penetration levels under any circumstances. CONCLUSIONS. The 6-hour healing infection model showed a role for ExsA in early interactions with the corneal epithelium that was not detectable with the conventional (0-hour) scratch model. Comparison of the 6- and 12-hour healing models, which showed that factors additional to barrier function contribute to defense against infection, could be used to gain new insights into corneal defense mechanisms, and the methods used by bacteria to circumvent them.

Original languageEnglish (US)
Pages (from-to)5220-5227
Number of pages8
JournalInvestigative Ophthalmology and Visual Science
Volume44
Issue number12
DOIs
StatePublished - Dec 1 2003

    Fingerprint

ASJC Scopus subject areas

  • Ophthalmology
  • Sensory Systems
  • Cellular and Molecular Neuroscience

Cite this