Role of atrial natriuretic peptide in adaptation of sodium excretion with reduced renal mass

S. Smith, Sharon Anderson, B. J. Ballermann, B. M. Brenner

Research output: Contribution to journalArticle

43 Citations (Scopus)

Abstract

The kidney maintains constancy of body fluid volume by regulating urinary sodium (Na) excretion. In chronic renal failure, the reduction in glomerular filtration rate (GFR) is accompanied by an increase in Na excretion per nephron if dietary Na intake is not changed. Reduction in Na intake in proportion to reduced GFR obviates this adaptive increase in tubule Na excretion. To examine the potential role of endogenous atrial natriuretic peptide (ANP) in modulating the enhanced Na excretion per nephron in chronic renal failure, we studied rats subjected to 5/6 nephrectomy or sham operation on low, normal, and high Na intakes. Urinary Na excretion increased with increasing dietary Na in all groups, and Na excretion per nephron was increased in 5/6 nephrectomized rats as compared with sham-operated rats on the higher Na intakes. Plasma ANP levels were unaffected by dietary Na manipulations in sham-operated rats, but rose progressively in 5/6 nephrectomized rats with increasing Na intake. Despite extensive nephron reduction, however, plasma ANP levels failed to rise in uremic rats on low Na diets and in this group Na excretion per nephron also failed to rise. We conclude that enhanced ANP secretion may play an important role in promoting the adaptive increase in Na excretion per nephron in chronic renal failure. Restriction of dietary Na in the setting of reduced GFR obviates the stimulation of ANP secretion as well as the adaptive increase in Na excretion rate per nephron.

Original languageEnglish (US)
Pages (from-to)1395-1398
Number of pages4
JournalJournal of Clinical Investigation
Volume77
Issue number4
StatePublished - 1986
Externally publishedYes

Fingerprint

Nephrons
Atrial Natriuretic Factor
Sodium
Kidney
Glomerular Filtration Rate
Chronic Kidney Failure
Body Fluids
Nephrectomy
Diet

ASJC Scopus subject areas

  • Medicine(all)

Cite this

Role of atrial natriuretic peptide in adaptation of sodium excretion with reduced renal mass. / Smith, S.; Anderson, Sharon; Ballermann, B. J.; Brenner, B. M.

In: Journal of Clinical Investigation, Vol. 77, No. 4, 1986, p. 1395-1398.

Research output: Contribution to journalArticle

@article{3e6495f63223402aab58994ad447d31f,
title = "Role of atrial natriuretic peptide in adaptation of sodium excretion with reduced renal mass",
abstract = "The kidney maintains constancy of body fluid volume by regulating urinary sodium (Na) excretion. In chronic renal failure, the reduction in glomerular filtration rate (GFR) is accompanied by an increase in Na excretion per nephron if dietary Na intake is not changed. Reduction in Na intake in proportion to reduced GFR obviates this adaptive increase in tubule Na excretion. To examine the potential role of endogenous atrial natriuretic peptide (ANP) in modulating the enhanced Na excretion per nephron in chronic renal failure, we studied rats subjected to 5/6 nephrectomy or sham operation on low, normal, and high Na intakes. Urinary Na excretion increased with increasing dietary Na in all groups, and Na excretion per nephron was increased in 5/6 nephrectomized rats as compared with sham-operated rats on the higher Na intakes. Plasma ANP levels were unaffected by dietary Na manipulations in sham-operated rats, but rose progressively in 5/6 nephrectomized rats with increasing Na intake. Despite extensive nephron reduction, however, plasma ANP levels failed to rise in uremic rats on low Na diets and in this group Na excretion per nephron also failed to rise. We conclude that enhanced ANP secretion may play an important role in promoting the adaptive increase in Na excretion per nephron in chronic renal failure. Restriction of dietary Na in the setting of reduced GFR obviates the stimulation of ANP secretion as well as the adaptive increase in Na excretion rate per nephron.",
author = "S. Smith and Sharon Anderson and Ballermann, {B. J.} and Brenner, {B. M.}",
year = "1986",
language = "English (US)",
volume = "77",
pages = "1395--1398",
journal = "Journal of Clinical Investigation",
issn = "0021-9738",
publisher = "The American Society for Clinical Investigation",
number = "4",

}

TY - JOUR

T1 - Role of atrial natriuretic peptide in adaptation of sodium excretion with reduced renal mass

AU - Smith, S.

AU - Anderson, Sharon

AU - Ballermann, B. J.

AU - Brenner, B. M.

PY - 1986

Y1 - 1986

N2 - The kidney maintains constancy of body fluid volume by regulating urinary sodium (Na) excretion. In chronic renal failure, the reduction in glomerular filtration rate (GFR) is accompanied by an increase in Na excretion per nephron if dietary Na intake is not changed. Reduction in Na intake in proportion to reduced GFR obviates this adaptive increase in tubule Na excretion. To examine the potential role of endogenous atrial natriuretic peptide (ANP) in modulating the enhanced Na excretion per nephron in chronic renal failure, we studied rats subjected to 5/6 nephrectomy or sham operation on low, normal, and high Na intakes. Urinary Na excretion increased with increasing dietary Na in all groups, and Na excretion per nephron was increased in 5/6 nephrectomized rats as compared with sham-operated rats on the higher Na intakes. Plasma ANP levels were unaffected by dietary Na manipulations in sham-operated rats, but rose progressively in 5/6 nephrectomized rats with increasing Na intake. Despite extensive nephron reduction, however, plasma ANP levels failed to rise in uremic rats on low Na diets and in this group Na excretion per nephron also failed to rise. We conclude that enhanced ANP secretion may play an important role in promoting the adaptive increase in Na excretion per nephron in chronic renal failure. Restriction of dietary Na in the setting of reduced GFR obviates the stimulation of ANP secretion as well as the adaptive increase in Na excretion rate per nephron.

AB - The kidney maintains constancy of body fluid volume by regulating urinary sodium (Na) excretion. In chronic renal failure, the reduction in glomerular filtration rate (GFR) is accompanied by an increase in Na excretion per nephron if dietary Na intake is not changed. Reduction in Na intake in proportion to reduced GFR obviates this adaptive increase in tubule Na excretion. To examine the potential role of endogenous atrial natriuretic peptide (ANP) in modulating the enhanced Na excretion per nephron in chronic renal failure, we studied rats subjected to 5/6 nephrectomy or sham operation on low, normal, and high Na intakes. Urinary Na excretion increased with increasing dietary Na in all groups, and Na excretion per nephron was increased in 5/6 nephrectomized rats as compared with sham-operated rats on the higher Na intakes. Plasma ANP levels were unaffected by dietary Na manipulations in sham-operated rats, but rose progressively in 5/6 nephrectomized rats with increasing Na intake. Despite extensive nephron reduction, however, plasma ANP levels failed to rise in uremic rats on low Na diets and in this group Na excretion per nephron also failed to rise. We conclude that enhanced ANP secretion may play an important role in promoting the adaptive increase in Na excretion per nephron in chronic renal failure. Restriction of dietary Na in the setting of reduced GFR obviates the stimulation of ANP secretion as well as the adaptive increase in Na excretion rate per nephron.

UR - http://www.scopus.com/inward/record.url?scp=0022552170&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=0022552170&partnerID=8YFLogxK

M3 - Article

C2 - 2937808

AN - SCOPUS:0022552170

VL - 77

SP - 1395

EP - 1398

JO - Journal of Clinical Investigation

JF - Journal of Clinical Investigation

SN - 0021-9738

IS - 4

ER -