Reversible cardiac disease features in an inducible CUG repeat RNA–expressing mouse model of myotonic dystrophy

Ashish N. Rao, Hannah M. Campbell, Xiangnan Guan, Tarah A. Word, Xander H.T. Wehrens, Zheng Xia, Thomas A. Cooper

Research output: Contribution to journalArticlepeer-review

Abstract

Myotonic dystrophy type 1 (DM1) is caused by a CTG repeat expansion in the DMPK gene. Expression of pathogenic expanded CUG repeat (CUGexp) RNA causes multisystemic disease by perturbing the functions of RNA-binding proteins, resulting in expression of fetal protein isoforms in adult tissues. Cardiac involvement affects 50% of individuals with DM1 and causes 25% of disease-related deaths. We developed a transgenic mouse model for tetracycline-inducible and heart-specific expression of human DMPK mRNA containing 960 CUG repeats. CUGexp RNA is expressed in atria and ventricles and induced mice exhibit electrophysiological and molecular features of DM1 disease, including cardiac conduction delays, supraventricular arrhythmias, nuclear RNA foci with Muscleblind protein colocalization, and alternative splicing defects. Importantly, these phenotypes were rescued upon loss of CUGexp RNA expression. Transcriptome analysis revealed gene expression and alternative splicing changes in ion transport genes that are associated with inherited cardiac conduction diseases, including a subset of genes involved in calcium handling. Consistent with RNA-Seq results, calcium-handling defects were identified in atrial cardiomyocytes isolated from mice expressing CUGexp RNA. These results identify potential tissue-specific mechanisms contributing to cardiac pathogenesis in DM1 and demonstrate the utility of reversible phenotypes in our model to facilitate development of targeted therapeutic approaches.

Original languageEnglish (US)
Article numbere143465
JournalJCI Insight
Volume6
Issue number5
DOIs
StatePublished - Mar 8 2021

ASJC Scopus subject areas

  • Medicine(all)

Fingerprint Dive into the research topics of 'Reversible cardiac disease features in an inducible CUG repeat RNA–expressing mouse model of myotonic dystrophy'. Together they form a unique fingerprint.

Cite this