Relation between anterograde blood flow through a coronary artery and the size of the perfusion bed it supplies: Experimental and clinical implications

Sanjiv Kaul, W. P. Glasheen, J. D. Oliner, P. Kelly, J. A. Gascho

Research output: Contribution to journalArticle

30 Citations (Scopus)

Abstract

The relation between anterograde blood flow through a coronary artery and the size of the perfusion bed it supplies is not known. Accordingly, the left circumflex coronary artery was cannulated and perfused with arterial blood in 12 open chest mongrel dogs. In Group I dogs (n = 7), the goal was to correlate the size of the perfusion bed with the magnitude of anterogradely derived myocardial blood flow. The size of the perfusion bed was measured with use of two-dimensional myocardial contrast echocardiography, whereas anterograde myocardial blood flow was determined by injecting radiolabeled microspheres directly into the artery. In Group II dogs (n = 5), the goal was to study the effects of altering coronary blood flow on both anterogradely and collateral vessel-derived myocardial flow within the perfusion bed. In these dogs, microspheres were injected directly into both the coronary artery and the left atrium at each flow rate. In Group I dogs, the left circumflex perfusion bed size, as defined by myocardial contrast echocardiography, decreased at lower anterograde myocardial blood flow rates. The change in perfusion bed size occurred at the lateral zones. There was a linear relation between the normalized perfusion bed size and the normalized anterograde myocardial blood flow: y = 0.45x + 54.2 (p <0.001, r2 = 0.77). These results were substantiated in Group II dogs, in which the size of the perfusion bed was approximated with use of radiolabeled microspheres. The size of the perfusion bed was most affected when anterograde myocardial blood flow decreased to less than approximately 33% of normal. At the lowest flow rates, there was a linear relation between anterograde blood flow versus the fraction of the left circumflex flow derived anterogradely: y = 2.41x + 0.22 (p <0.001, r2 = 0.90). The lower the level of anterograde flow, the greater was the blood flow derived from remote vessels. It is concluded that the size of the area perfused by a coronary artery is significantly influenced by the magnitude of anterograde blood flow through that artery. These findings may have important implications in experimental and clinical models of myocardial ischemia.

Original languageEnglish (US)
Pages (from-to)1403-1413
Number of pages11
JournalJournal of the American College of Cardiology
Volume17
Issue number6
StatePublished - 1991
Externally publishedYes

Fingerprint

Hospital Bed Capacity
Coronary Vessels
Perfusion
Dogs
Microspheres
Echocardiography
Arteries
Heart Atria
Myocardial Ischemia

ASJC Scopus subject areas

  • Nursing(all)

Cite this

Relation between anterograde blood flow through a coronary artery and the size of the perfusion bed it supplies : Experimental and clinical implications. / Kaul, Sanjiv; Glasheen, W. P.; Oliner, J. D.; Kelly, P.; Gascho, J. A.

In: Journal of the American College of Cardiology, Vol. 17, No. 6, 1991, p. 1403-1413.

Research output: Contribution to journalArticle

@article{2e4454c1ca7e41ad9e82066450fc06f1,
title = "Relation between anterograde blood flow through a coronary artery and the size of the perfusion bed it supplies: Experimental and clinical implications",
abstract = "The relation between anterograde blood flow through a coronary artery and the size of the perfusion bed it supplies is not known. Accordingly, the left circumflex coronary artery was cannulated and perfused with arterial blood in 12 open chest mongrel dogs. In Group I dogs (n = 7), the goal was to correlate the size of the perfusion bed with the magnitude of anterogradely derived myocardial blood flow. The size of the perfusion bed was measured with use of two-dimensional myocardial contrast echocardiography, whereas anterograde myocardial blood flow was determined by injecting radiolabeled microspheres directly into the artery. In Group II dogs (n = 5), the goal was to study the effects of altering coronary blood flow on both anterogradely and collateral vessel-derived myocardial flow within the perfusion bed. In these dogs, microspheres were injected directly into both the coronary artery and the left atrium at each flow rate. In Group I dogs, the left circumflex perfusion bed size, as defined by myocardial contrast echocardiography, decreased at lower anterograde myocardial blood flow rates. The change in perfusion bed size occurred at the lateral zones. There was a linear relation between the normalized perfusion bed size and the normalized anterograde myocardial blood flow: y = 0.45x + 54.2 (p <0.001, r2 = 0.77). These results were substantiated in Group II dogs, in which the size of the perfusion bed was approximated with use of radiolabeled microspheres. The size of the perfusion bed was most affected when anterograde myocardial blood flow decreased to less than approximately 33{\%} of normal. At the lowest flow rates, there was a linear relation between anterograde blood flow versus the fraction of the left circumflex flow derived anterogradely: y = 2.41x + 0.22 (p <0.001, r2 = 0.90). The lower the level of anterograde flow, the greater was the blood flow derived from remote vessels. It is concluded that the size of the area perfused by a coronary artery is significantly influenced by the magnitude of anterograde blood flow through that artery. These findings may have important implications in experimental and clinical models of myocardial ischemia.",
author = "Sanjiv Kaul and Glasheen, {W. P.} and Oliner, {J. D.} and P. Kelly and Gascho, {J. A.}",
year = "1991",
language = "English (US)",
volume = "17",
pages = "1403--1413",
journal = "Journal of the American College of Cardiology",
issn = "0735-1097",
publisher = "Elsevier USA",
number = "6",

}

TY - JOUR

T1 - Relation between anterograde blood flow through a coronary artery and the size of the perfusion bed it supplies

T2 - Experimental and clinical implications

AU - Kaul, Sanjiv

AU - Glasheen, W. P.

AU - Oliner, J. D.

AU - Kelly, P.

AU - Gascho, J. A.

PY - 1991

Y1 - 1991

N2 - The relation between anterograde blood flow through a coronary artery and the size of the perfusion bed it supplies is not known. Accordingly, the left circumflex coronary artery was cannulated and perfused with arterial blood in 12 open chest mongrel dogs. In Group I dogs (n = 7), the goal was to correlate the size of the perfusion bed with the magnitude of anterogradely derived myocardial blood flow. The size of the perfusion bed was measured with use of two-dimensional myocardial contrast echocardiography, whereas anterograde myocardial blood flow was determined by injecting radiolabeled microspheres directly into the artery. In Group II dogs (n = 5), the goal was to study the effects of altering coronary blood flow on both anterogradely and collateral vessel-derived myocardial flow within the perfusion bed. In these dogs, microspheres were injected directly into both the coronary artery and the left atrium at each flow rate. In Group I dogs, the left circumflex perfusion bed size, as defined by myocardial contrast echocardiography, decreased at lower anterograde myocardial blood flow rates. The change in perfusion bed size occurred at the lateral zones. There was a linear relation between the normalized perfusion bed size and the normalized anterograde myocardial blood flow: y = 0.45x + 54.2 (p <0.001, r2 = 0.77). These results were substantiated in Group II dogs, in which the size of the perfusion bed was approximated with use of radiolabeled microspheres. The size of the perfusion bed was most affected when anterograde myocardial blood flow decreased to less than approximately 33% of normal. At the lowest flow rates, there was a linear relation between anterograde blood flow versus the fraction of the left circumflex flow derived anterogradely: y = 2.41x + 0.22 (p <0.001, r2 = 0.90). The lower the level of anterograde flow, the greater was the blood flow derived from remote vessels. It is concluded that the size of the area perfused by a coronary artery is significantly influenced by the magnitude of anterograde blood flow through that artery. These findings may have important implications in experimental and clinical models of myocardial ischemia.

AB - The relation between anterograde blood flow through a coronary artery and the size of the perfusion bed it supplies is not known. Accordingly, the left circumflex coronary artery was cannulated and perfused with arterial blood in 12 open chest mongrel dogs. In Group I dogs (n = 7), the goal was to correlate the size of the perfusion bed with the magnitude of anterogradely derived myocardial blood flow. The size of the perfusion bed was measured with use of two-dimensional myocardial contrast echocardiography, whereas anterograde myocardial blood flow was determined by injecting radiolabeled microspheres directly into the artery. In Group II dogs (n = 5), the goal was to study the effects of altering coronary blood flow on both anterogradely and collateral vessel-derived myocardial flow within the perfusion bed. In these dogs, microspheres were injected directly into both the coronary artery and the left atrium at each flow rate. In Group I dogs, the left circumflex perfusion bed size, as defined by myocardial contrast echocardiography, decreased at lower anterograde myocardial blood flow rates. The change in perfusion bed size occurred at the lateral zones. There was a linear relation between the normalized perfusion bed size and the normalized anterograde myocardial blood flow: y = 0.45x + 54.2 (p <0.001, r2 = 0.77). These results were substantiated in Group II dogs, in which the size of the perfusion bed was approximated with use of radiolabeled microspheres. The size of the perfusion bed was most affected when anterograde myocardial blood flow decreased to less than approximately 33% of normal. At the lowest flow rates, there was a linear relation between anterograde blood flow versus the fraction of the left circumflex flow derived anterogradely: y = 2.41x + 0.22 (p <0.001, r2 = 0.90). The lower the level of anterograde flow, the greater was the blood flow derived from remote vessels. It is concluded that the size of the area perfused by a coronary artery is significantly influenced by the magnitude of anterograde blood flow through that artery. These findings may have important implications in experimental and clinical models of myocardial ischemia.

UR - http://www.scopus.com/inward/record.url?scp=0025764835&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=0025764835&partnerID=8YFLogxK

M3 - Article

C2 - 2016458

AN - SCOPUS:0025764835

VL - 17

SP - 1403

EP - 1413

JO - Journal of the American College of Cardiology

JF - Journal of the American College of Cardiology

SN - 0735-1097

IS - 6

ER -