Regulated and multiple miRNA and siRNA delivery into primary cells by a lentiviral platform

Mario Amendola, Laura Passerini, Ferdinando Pucci, Bernhard Gentner, Rosa Bacchetta, Luigi Naldini

Research output: Contribution to journalArticle

65 Scopus citations

Abstract

RNA interference (RNAi) has tremendous potential for investigating gene function and developing new therapies. However, the design and validation of proficient vehicles for stable and safe microRNA (miR) and small interfering RNA (siRNA) delivery into relevant target cells remains an active area of investigation. Here, we developed a lentiviral platform to efficiently coexpress one or more natural/artificial miR together with a gene of interest from constitutive or regulated polymerase-II (Pol-II) promoters. By swapping the stem-loop (sl) sequence of a selected primary transcript (pri-miR) with that of other miR or replacing the stem with an siRNA of choice, we consistently obtained robust expression of the chimeric/artificial miR in several cell types. We validated our platform transducing a panel of engineered cells stably expressing sensitive reporters for miR activity and on a natural target. This approach allowed us to quantitatively assess at steady state the target suppression activity and expression level of each delivered miR and to compare it to those of endogenous miR. Exogenous/artificial miR reached the concentration and activity typical of highly expressed natural miR without perturbing endogenous miR maturation or regulation. Finally, we demonstrate the robust performance of the platform reversing the anergic/suppressive phenotype of human primary regulatory T cells (Treg) by knocking-down their master gene Forkhead Transcription Factor P3 (FOXP3).

Original languageEnglish (US)
Pages (from-to)1039-1052
Number of pages14
JournalMolecular Therapy
Volume17
Issue number6
DOIs
StatePublished - Mar 18 2009

    Fingerprint

ASJC Scopus subject areas

  • Molecular Medicine
  • Molecular Biology
  • Genetics
  • Pharmacology
  • Drug Discovery

Cite this