Prospective breast cancer risk prediction model for women undergoing screening mammography

William E. Barlow, Emily White, Rachel Ballard-Barbash, Pamela M. Vacek, Linda Titus-Ernstoff, Patricia A. Carney, Jeffrey A. Tice, Diana S.M. Buist, Berta M. Geller, Robert Rosenberg, Bonnie C. Yankaskas, Karla Kerlikowske

Research output: Contribution to journalArticle

325 Scopus citations

Abstract

Background: Risk prediction models for breast cancer can be improved by the addition of recently identified risk factors, including breast density and use of hormone therapy. We used prospective risk information to predict a diagnosis of breast cancer in a cohort of 1 million women undergoing screening mammography. Methods: There were 2392998 eligible screening mammograms from women without previously diagnosed breast cancer who had had a prior mammogram in the preceding 5 years. Within 1 year of the screening mammogram, 11 638 women were diagnosed with breast cancer. Separate logistic regression risk models were constructed for premenopausal and postmenopausal examinations by use of a stringent (P < .0001) criterion for the inclusion of risk factors. Risk models were constructed with 75% of the data and validated with the remaining 25%. Concordance of the predicted with the observed outcomes was assessed by a concordance (c) statistic after logistic regression model fit. All statistical tests were two-sided. Results: Statistically significant risk factors for breast cancer diagnosis among premenopausal women included age, breast density, family history of breast cancer, and a prior breast procedure. For postmenopausal women, the statistically significant factors included age, breast density, race, ethnicity, family history of breast cancer, a prior breast procedure, body mass index, natural menopause, hormone therapy, and a prior false-positive mammogram. The model may identify high-risk women better than the Gail model, although predictive accuracy was only moderate. The c statistics were 0.631 (95% confidence interval [CI] = 0.618 to 0.644) for premenopausal women and 0.624 (95% CI = 0.619 to 0.630) for postmenopausal women. Conclusion: Breast density is a strong additional risk factor for breast cancer, although it is unknown whether reduction in breast density would reduce risk. Our risk model may be able to identify women at high risk for breast cancer for preventive interventions or more intensive surveillance.

Original languageEnglish (US)
Pages (from-to)1204-1214
Number of pages11
JournalJournal of the National Cancer Institute
Volume98
Issue number17
DOIs
StatePublished - Sep 6 2006

ASJC Scopus subject areas

  • Oncology
  • Cancer Research

Fingerprint Dive into the research topics of 'Prospective breast cancer risk prediction model for women undergoing screening mammography'. Together they form a unique fingerprint.

  • Cite this

    Barlow, W. E., White, E., Ballard-Barbash, R., Vacek, P. M., Titus-Ernstoff, L., Carney, P. A., Tice, J. A., Buist, D. S. M., Geller, B. M., Rosenberg, R., Yankaskas, B. C., & Kerlikowske, K. (2006). Prospective breast cancer risk prediction model for women undergoing screening mammography. Journal of the National Cancer Institute, 98(17), 1204-1214. https://doi.org/10.1093/jnci/djj331