Predicting high-risk endometrioid carcinomas using proteins

Di Du, Wencai Ma, Melinda S. Yates, Tao Chen, Karen H. Lu, Yiling Lu, John N. Weinstein, Russell R. Broaddus, Gordon B. Mills, Yuexin Liu

    Research output: Contribution to journalArticle

    5 Scopus citations

    Abstract

    Background: The lethality of endometrioid endometrial cancer (EEC) is primarily attributable to advanced-stage diseases. We sought to develop a biomarker model that predicts EEC surgical stage at the time of clinical diagnosis. Results: PSES was significantly correlated with surgical stage in the TCGA cohort (P < 0.0001) and in the validation cohort (P = 0.0003). Even among grade 1 or 2 tumors, PSES was significantly higher in advanced than in early stage tumors in both the TCGA (P = 0.005) and MD Anderson Cancer Center (MDACC) (P = 0.006) cohorts. Patients with positive PSES score had significantly shorter progression-free survival than those with negative PSES in the TCGA (hazard ratio [HR], 2.033; 95% CI, 1.031 to 3.809; P = 0.04) and validation (HR, 3.306; 95% CI, 1.836 to 9.436; P = 0.0007) cohorts. The ErbB signaling pathway was most significantly enriched in the PSES proteins and downregulated in advanced stage tumors. Methods: Using reverse-phase protein array expression profiles of 170 antibodies for 210 EEC cases from TCGA, we constructed a Protein Scoring of EEC Staging (PSES) scheme comprising 6 proteins (3 of them phosphorylated) for surgical stage prediction. We validated and evaluated its diagnostic potential in an independent cohort of 184 EEC cases obtained at MDACC using receiver operating characteristic curve analyses. Kaplan-Meier survival analysis was used to examine the association of PSES score with patient outcome, and Ingenuity pathway analysis was used to identify relevant signaling pathways. Two-sided statistical tests were used. Conclusions: PSES may provide clinically useful prediction of high-risk tumors and offer new insights into tumor biology in EEC.

    Original languageEnglish (US)
    Pages (from-to)19704-19715
    Number of pages12
    JournalOncotarget
    Volume9
    Issue number28
    DOIs
    StatePublished - Apr 13 2018

    Keywords

    • Biomarker
    • Endometrioid carcinoma
    • Protein
    • RPPA
    • Stage

    ASJC Scopus subject areas

    • Oncology

    Fingerprint Dive into the research topics of 'Predicting high-risk endometrioid carcinomas using proteins'. Together they form a unique fingerprint.

  • Cite this

    Du, D., Ma, W., Yates, M. S., Chen, T., Lu, K. H., Lu, Y., Weinstein, J. N., Broaddus, R. R., Mills, G. B., & Liu, Y. (2018). Predicting high-risk endometrioid carcinomas using proteins. Oncotarget, 9(28), 19704-19715. https://doi.org/10.18632/oncotarget.24803