neonatal venous thromboembolism

Research output: Contribution to journalShort survey

10 Citations (Scopus)

Abstract

Neonates are the pediatric population at highest risk for development of venous thromboembolism (VTE), and the incidence of VTE in the neonatal population is increasing. This is especially true in the critically ill population. Several large studies indicate that the incidence of neonatal VTE is up almost threefold in the last two decades. Central lines, fluid fluctuations, sepsis, liver dysfunction, and inflammation contribute to the risk profile for VTE development in ill neonates. In addition, the neonatal hemostatic system is different from that of older children and adults. Platelet function, pro- and anticoagulant proteins concentrations, and fibrinolytic pathway protein concentrations are developmentally regulated and generate a hemostatic homeostasis that is unique to the neonatal time period. The clinical picture of a critically ill neonate combined with the physiologically distinct neonatal hemostatic system easily fulfills the criteria for Virchow's triad with venous stasis, hypercoagulability, and endothelial injury and puts the neonatal patient at risk for VTE development. The presentation of a VTE in a neonate is similar to that of older children or adults and is dependent upon location of the VTE. Ultrasound is the most common diagnostic tool employed in identifying neonatal VTE, but relatively small vessels of the neonate as well as frequent low pulse pressure can make ultrasound less reliable. The diagnosis of a thrombophilic disorder in the neonatal population is unlikely to change management or outcome, and the role of thrombophilia testing in this population requires further study. Treatment of neonatal VTE is aimed at reducing VTE-associated morbidity and mortality. Recommendations for treating, though, cannot be extrapolated from guidelines for older children or adults. Neonates are at risk for bleeding complications, particularly younger neonates with more fragile intracranial vessels. Developmental alterations in the coagulation proteins as well as unique pharmacokinetics must also be taken into consideration when recommending VTE treatment. In this review, epidemiology of neonatal VTE, pathophysiology of neonatal VTE with particular attention to the developmental hemostatic system, diagnostic evaluations of neonatal VTE, and treatment guidelines for neonatal VTE will be reviewed.

Original languageEnglish (US)
Article number136
JournalFrontiers in Pediatrics
Volume5
DOIs
StatePublished - Jun 6 2017

Fingerprint

Venous Thromboembolism
Newborn Infant
Hemostatics
Thrombophilia
Critical Illness
Population
Guidelines
Proteins
Anticoagulants
Liver Diseases
Sepsis

Keywords

  • renal vein thrombosis
  • Developmental hemostasis
  • Neonatal thrombosis
  • Neonatal venous thromboembolism
  • Thrombophilia

ASJC Scopus subject areas

  • Pediatrics, Perinatology, and Child Health

Cite this

neonatal venous thromboembolism. / Haley, Kristina.

In: Frontiers in Pediatrics, Vol. 5, 136, 06.06.2017.

Research output: Contribution to journalShort survey

@article{1aea0717757d4e7e996ff2868c37915c,
title = "neonatal venous thromboembolism",
abstract = "Neonates are the pediatric population at highest risk for development of venous thromboembolism (VTE), and the incidence of VTE in the neonatal population is increasing. This is especially true in the critically ill population. Several large studies indicate that the incidence of neonatal VTE is up almost threefold in the last two decades. Central lines, fluid fluctuations, sepsis, liver dysfunction, and inflammation contribute to the risk profile for VTE development in ill neonates. In addition, the neonatal hemostatic system is different from that of older children and adults. Platelet function, pro- and anticoagulant proteins concentrations, and fibrinolytic pathway protein concentrations are developmentally regulated and generate a hemostatic homeostasis that is unique to the neonatal time period. The clinical picture of a critically ill neonate combined with the physiologically distinct neonatal hemostatic system easily fulfills the criteria for Virchow's triad with venous stasis, hypercoagulability, and endothelial injury and puts the neonatal patient at risk for VTE development. The presentation of a VTE in a neonate is similar to that of older children or adults and is dependent upon location of the VTE. Ultrasound is the most common diagnostic tool employed in identifying neonatal VTE, but relatively small vessels of the neonate as well as frequent low pulse pressure can make ultrasound less reliable. The diagnosis of a thrombophilic disorder in the neonatal population is unlikely to change management or outcome, and the role of thrombophilia testing in this population requires further study. Treatment of neonatal VTE is aimed at reducing VTE-associated morbidity and mortality. Recommendations for treating, though, cannot be extrapolated from guidelines for older children or adults. Neonates are at risk for bleeding complications, particularly younger neonates with more fragile intracranial vessels. Developmental alterations in the coagulation proteins as well as unique pharmacokinetics must also be taken into consideration when recommending VTE treatment. In this review, epidemiology of neonatal VTE, pathophysiology of neonatal VTE with particular attention to the developmental hemostatic system, diagnostic evaluations of neonatal VTE, and treatment guidelines for neonatal VTE will be reviewed.",
keywords = "renal vein thrombosis, Developmental hemostasis, Neonatal thrombosis, Neonatal venous thromboembolism, Thrombophilia",
author = "Kristina Haley",
year = "2017",
month = "6",
day = "6",
doi = "10.3389/fped.2017.00136",
language = "English (US)",
volume = "5",
journal = "Frontiers in Pediatrics",
issn = "2296-2360",
publisher = "Frontiers Media S. A.",

}

TY - JOUR

T1 - neonatal venous thromboembolism

AU - Haley, Kristina

PY - 2017/6/6

Y1 - 2017/6/6

N2 - Neonates are the pediatric population at highest risk for development of venous thromboembolism (VTE), and the incidence of VTE in the neonatal population is increasing. This is especially true in the critically ill population. Several large studies indicate that the incidence of neonatal VTE is up almost threefold in the last two decades. Central lines, fluid fluctuations, sepsis, liver dysfunction, and inflammation contribute to the risk profile for VTE development in ill neonates. In addition, the neonatal hemostatic system is different from that of older children and adults. Platelet function, pro- and anticoagulant proteins concentrations, and fibrinolytic pathway protein concentrations are developmentally regulated and generate a hemostatic homeostasis that is unique to the neonatal time period. The clinical picture of a critically ill neonate combined with the physiologically distinct neonatal hemostatic system easily fulfills the criteria for Virchow's triad with venous stasis, hypercoagulability, and endothelial injury and puts the neonatal patient at risk for VTE development. The presentation of a VTE in a neonate is similar to that of older children or adults and is dependent upon location of the VTE. Ultrasound is the most common diagnostic tool employed in identifying neonatal VTE, but relatively small vessels of the neonate as well as frequent low pulse pressure can make ultrasound less reliable. The diagnosis of a thrombophilic disorder in the neonatal population is unlikely to change management or outcome, and the role of thrombophilia testing in this population requires further study. Treatment of neonatal VTE is aimed at reducing VTE-associated morbidity and mortality. Recommendations for treating, though, cannot be extrapolated from guidelines for older children or adults. Neonates are at risk for bleeding complications, particularly younger neonates with more fragile intracranial vessels. Developmental alterations in the coagulation proteins as well as unique pharmacokinetics must also be taken into consideration when recommending VTE treatment. In this review, epidemiology of neonatal VTE, pathophysiology of neonatal VTE with particular attention to the developmental hemostatic system, diagnostic evaluations of neonatal VTE, and treatment guidelines for neonatal VTE will be reviewed.

AB - Neonates are the pediatric population at highest risk for development of venous thromboembolism (VTE), and the incidence of VTE in the neonatal population is increasing. This is especially true in the critically ill population. Several large studies indicate that the incidence of neonatal VTE is up almost threefold in the last two decades. Central lines, fluid fluctuations, sepsis, liver dysfunction, and inflammation contribute to the risk profile for VTE development in ill neonates. In addition, the neonatal hemostatic system is different from that of older children and adults. Platelet function, pro- and anticoagulant proteins concentrations, and fibrinolytic pathway protein concentrations are developmentally regulated and generate a hemostatic homeostasis that is unique to the neonatal time period. The clinical picture of a critically ill neonate combined with the physiologically distinct neonatal hemostatic system easily fulfills the criteria for Virchow's triad with venous stasis, hypercoagulability, and endothelial injury and puts the neonatal patient at risk for VTE development. The presentation of a VTE in a neonate is similar to that of older children or adults and is dependent upon location of the VTE. Ultrasound is the most common diagnostic tool employed in identifying neonatal VTE, but relatively small vessels of the neonate as well as frequent low pulse pressure can make ultrasound less reliable. The diagnosis of a thrombophilic disorder in the neonatal population is unlikely to change management or outcome, and the role of thrombophilia testing in this population requires further study. Treatment of neonatal VTE is aimed at reducing VTE-associated morbidity and mortality. Recommendations for treating, though, cannot be extrapolated from guidelines for older children or adults. Neonates are at risk for bleeding complications, particularly younger neonates with more fragile intracranial vessels. Developmental alterations in the coagulation proteins as well as unique pharmacokinetics must also be taken into consideration when recommending VTE treatment. In this review, epidemiology of neonatal VTE, pathophysiology of neonatal VTE with particular attention to the developmental hemostatic system, diagnostic evaluations of neonatal VTE, and treatment guidelines for neonatal VTE will be reviewed.

KW - renal vein thrombosis

KW - Developmental hemostasis

KW - Neonatal thrombosis

KW - Neonatal venous thromboembolism

KW - Thrombophilia

UR - http://www.scopus.com/inward/record.url?scp=85041965101&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=85041965101&partnerID=8YFLogxK

U2 - 10.3389/fped.2017.00136

DO - 10.3389/fped.2017.00136

M3 - Short survey

AN - SCOPUS:85041965101

VL - 5

JO - Frontiers in Pediatrics

JF - Frontiers in Pediatrics

SN - 2296-2360

M1 - 136

ER -