Kinetic and e.p.r. studies of cyanide and azide binding to the copper sites of dopamine (3,4-dihydroxyphenethylamine) beta-mono-oxygenase.

Ninian Blackburn, D. Collison, J. Sutton, F. E. Mabbs

Research output: Contribution to journalArticle

30 Citations (Scopus)

Abstract

The kinetics of inhibition of dopamine (3,4-dihydroxyphenethylamine) beta-mono-oxygenase by cyanide (CN-) and azide (N3-) ions have been investigated by using steady-state methods. Both anions show complex non-competitive-inhibition patterns with respect to ascorbate, suggestive of anion binding at two different sites on the oxidized enzyme. To further investigate this finding, e.p.r. titrations of CN- and N3- binding to the 63Cu-reconstituted enzyme were carried out. Addition of approx. 2 equiv. of CN- to copper elicits a new signal with g = 2.217, g = 2.025, A = 17.0 mT characteristic of a copper (II)-cyano complex. Simulations show that this signal accounts for half the copper (II) in the enzyme. The remainder of the enzyme-bound copper is expressed by a signal close to, but not identical with, that of native enzyme. Further addition of CN- induces a simultaneous decrease in intensity of both of these signals so that their 1:1 ratio is maintained. Binding of N3-, on the other hand, changes the e.p.r. spectrum to a form different from either that of the native or CN- -treated enzyme, and integrates to 100% of the copper in the enzyme (g = 2.252, g = 2.050, A = 16.5 mT). Resolved superhyperfine structure is apparent in the g region. N3- binding is also accompanied by the appearance of a broad charge-transfer band centred at 387 nm. Neither 9 nor 35 GHz e.p.r. spectra show evidence for more than one (non-interacting) species of Cu(II) in native enzyme and N3- derivatives. The binding and reactivity of CN-, on the other hand, argues against independent copper sites in the enzyme.

Original languageEnglish (US)
Pages (from-to)447-454
Number of pages8
JournalBiochemical Journal
Volume220
Issue number2
StatePublished - Jun 1 1984
Externally publishedYes

Fingerprint

Oxygenases
Azides
Cyanides
Copper
Dopamine
Kinetics
Enzymes
Anions
Titration
Charge transfer
Ions
Derivatives

ASJC Scopus subject areas

  • Biochemistry

Cite this

Kinetic and e.p.r. studies of cyanide and azide binding to the copper sites of dopamine (3,4-dihydroxyphenethylamine) beta-mono-oxygenase. / Blackburn, Ninian; Collison, D.; Sutton, J.; Mabbs, F. E.

In: Biochemical Journal, Vol. 220, No. 2, 01.06.1984, p. 447-454.

Research output: Contribution to journalArticle

@article{996e0bb8578746bdb1715588d529af3b,
title = "Kinetic and e.p.r. studies of cyanide and azide binding to the copper sites of dopamine (3,4-dihydroxyphenethylamine) beta-mono-oxygenase.",
abstract = "The kinetics of inhibition of dopamine (3,4-dihydroxyphenethylamine) beta-mono-oxygenase by cyanide (CN-) and azide (N3-) ions have been investigated by using steady-state methods. Both anions show complex non-competitive-inhibition patterns with respect to ascorbate, suggestive of anion binding at two different sites on the oxidized enzyme. To further investigate this finding, e.p.r. titrations of CN- and N3- binding to the 63Cu-reconstituted enzyme were carried out. Addition of approx. 2 equiv. of CN- to copper elicits a new signal with g = 2.217, g = 2.025, A = 17.0 mT characteristic of a copper (II)-cyano complex. Simulations show that this signal accounts for half the copper (II) in the enzyme. The remainder of the enzyme-bound copper is expressed by a signal close to, but not identical with, that of native enzyme. Further addition of CN- induces a simultaneous decrease in intensity of both of these signals so that their 1:1 ratio is maintained. Binding of N3-, on the other hand, changes the e.p.r. spectrum to a form different from either that of the native or CN- -treated enzyme, and integrates to 100{\%} of the copper in the enzyme (g = 2.252, g = 2.050, A = 16.5 mT). Resolved superhyperfine structure is apparent in the g region. N3- binding is also accompanied by the appearance of a broad charge-transfer band centred at 387 nm. Neither 9 nor 35 GHz e.p.r. spectra show evidence for more than one (non-interacting) species of Cu(II) in native enzyme and N3- derivatives. The binding and reactivity of CN-, on the other hand, argues against independent copper sites in the enzyme.",
author = "Ninian Blackburn and D. Collison and J. Sutton and Mabbs, {F. E.}",
year = "1984",
month = "6",
day = "1",
language = "English (US)",
volume = "220",
pages = "447--454",
journal = "Biochemical Journal",
issn = "0264-6021",
publisher = "Portland Press Ltd.",
number = "2",

}

TY - JOUR

T1 - Kinetic and e.p.r. studies of cyanide and azide binding to the copper sites of dopamine (3,4-dihydroxyphenethylamine) beta-mono-oxygenase.

AU - Blackburn, Ninian

AU - Collison, D.

AU - Sutton, J.

AU - Mabbs, F. E.

PY - 1984/6/1

Y1 - 1984/6/1

N2 - The kinetics of inhibition of dopamine (3,4-dihydroxyphenethylamine) beta-mono-oxygenase by cyanide (CN-) and azide (N3-) ions have been investigated by using steady-state methods. Both anions show complex non-competitive-inhibition patterns with respect to ascorbate, suggestive of anion binding at two different sites on the oxidized enzyme. To further investigate this finding, e.p.r. titrations of CN- and N3- binding to the 63Cu-reconstituted enzyme were carried out. Addition of approx. 2 equiv. of CN- to copper elicits a new signal with g = 2.217, g = 2.025, A = 17.0 mT characteristic of a copper (II)-cyano complex. Simulations show that this signal accounts for half the copper (II) in the enzyme. The remainder of the enzyme-bound copper is expressed by a signal close to, but not identical with, that of native enzyme. Further addition of CN- induces a simultaneous decrease in intensity of both of these signals so that their 1:1 ratio is maintained. Binding of N3-, on the other hand, changes the e.p.r. spectrum to a form different from either that of the native or CN- -treated enzyme, and integrates to 100% of the copper in the enzyme (g = 2.252, g = 2.050, A = 16.5 mT). Resolved superhyperfine structure is apparent in the g region. N3- binding is also accompanied by the appearance of a broad charge-transfer band centred at 387 nm. Neither 9 nor 35 GHz e.p.r. spectra show evidence for more than one (non-interacting) species of Cu(II) in native enzyme and N3- derivatives. The binding and reactivity of CN-, on the other hand, argues against independent copper sites in the enzyme.

AB - The kinetics of inhibition of dopamine (3,4-dihydroxyphenethylamine) beta-mono-oxygenase by cyanide (CN-) and azide (N3-) ions have been investigated by using steady-state methods. Both anions show complex non-competitive-inhibition patterns with respect to ascorbate, suggestive of anion binding at two different sites on the oxidized enzyme. To further investigate this finding, e.p.r. titrations of CN- and N3- binding to the 63Cu-reconstituted enzyme were carried out. Addition of approx. 2 equiv. of CN- to copper elicits a new signal with g = 2.217, g = 2.025, A = 17.0 mT characteristic of a copper (II)-cyano complex. Simulations show that this signal accounts for half the copper (II) in the enzyme. The remainder of the enzyme-bound copper is expressed by a signal close to, but not identical with, that of native enzyme. Further addition of CN- induces a simultaneous decrease in intensity of both of these signals so that their 1:1 ratio is maintained. Binding of N3-, on the other hand, changes the e.p.r. spectrum to a form different from either that of the native or CN- -treated enzyme, and integrates to 100% of the copper in the enzyme (g = 2.252, g = 2.050, A = 16.5 mT). Resolved superhyperfine structure is apparent in the g region. N3- binding is also accompanied by the appearance of a broad charge-transfer band centred at 387 nm. Neither 9 nor 35 GHz e.p.r. spectra show evidence for more than one (non-interacting) species of Cu(II) in native enzyme and N3- derivatives. The binding and reactivity of CN-, on the other hand, argues against independent copper sites in the enzyme.

UR - http://www.scopus.com/inward/record.url?scp=0021438711&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=0021438711&partnerID=8YFLogxK

M3 - Article

C2 - 6331417

AN - SCOPUS:0021438711

VL - 220

SP - 447

EP - 454

JO - Biochemical Journal

JF - Biochemical Journal

SN - 0264-6021

IS - 2

ER -