Kinesin is bound with high affinity to squid axon organelles that move to the plus-end of microtubules

Bruce Schnapp, Thomas S. Reese, Ruth Bechtold

Research output: Contribution to journalArticle

82 Citations (Scopus)

Abstract

This paper addresses the question of whether microtubule-directed transport of vesicular organelles depends on the presence of a pool of cytosolic factors, including soluble motor proteins and accessory factors. Earlier studies with squid axon organelles (Schroer et al., 1988) suggested that the presence of cytosol induces a >20-fold increase in the number of organelles moving per unit time on microtubules in vitro. These earlier studies, however, did not consider that cytosol might nonspecifically increase the numbers of moving organelles, i.e., by blocking adsorption of organelles to the coverglass. Here we report that treatment of the coverglass with casein, in the absence of cytosol, blocks adsorption of organelles to the coverglass and results in vigorous movement of vesicular organelles in the complete absence of soluble proteins. This technical improvement makes it possible, for the first time, to perform quantitative studies of organelle movement in the absence of cytosol. These new studies show that organelle movement activity (numbers of moving organelles/min/ μm microtubule) of unextracted organelles is not increased by cytosol. Unextracted organelles move in single directions, approximately two thirds toward the plus-end and one third toward the minus-end of microtubules. Extraction of organelles with 600 mM KI completely inhibits minus-end, but not plus-end directed organelle movement. Upon addition of cytosol, minus-end directed movement of KI organelles is restored, while plus-end directed movement is unaffected. Biochemical studies indicate that KI-extracted organelles attach to microtubules in the presence of AMP-PNP and copurify with tightly bound kinesin. The bound kinesin is not extracted from organelles by 1 M KI, 1 M NaCl or carbonate (pH 11.3). These results suggest that kinesin is irreversibly bound to organelles that move to the plus-end of microtubules and that the presence of soluble kinesin and accessory factors is not required for movement of plus-end organelles in squid axons.

Original languageEnglish (US)
Pages (from-to)389-399
Number of pages11
JournalJournal of Cell Biology
Volume119
Issue number2
StatePublished - Oct 1992
Externally publishedYes

Fingerprint

Kinesin
Decapodiformes
Microtubules
Organelles
Axons
Cytosol
Adsorption
Adenylyl Imidodiphosphate

ASJC Scopus subject areas

  • Cell Biology

Cite this

Kinesin is bound with high affinity to squid axon organelles that move to the plus-end of microtubules. / Schnapp, Bruce; Reese, Thomas S.; Bechtold, Ruth.

In: Journal of Cell Biology, Vol. 119, No. 2, 10.1992, p. 389-399.

Research output: Contribution to journalArticle

@article{8b308d460ad445e3903a7eb3ceadce44,
title = "Kinesin is bound with high affinity to squid axon organelles that move to the plus-end of microtubules",
abstract = "This paper addresses the question of whether microtubule-directed transport of vesicular organelles depends on the presence of a pool of cytosolic factors, including soluble motor proteins and accessory factors. Earlier studies with squid axon organelles (Schroer et al., 1988) suggested that the presence of cytosol induces a >20-fold increase in the number of organelles moving per unit time on microtubules in vitro. These earlier studies, however, did not consider that cytosol might nonspecifically increase the numbers of moving organelles, i.e., by blocking adsorption of organelles to the coverglass. Here we report that treatment of the coverglass with casein, in the absence of cytosol, blocks adsorption of organelles to the coverglass and results in vigorous movement of vesicular organelles in the complete absence of soluble proteins. This technical improvement makes it possible, for the first time, to perform quantitative studies of organelle movement in the absence of cytosol. These new studies show that organelle movement activity (numbers of moving organelles/min/ μm microtubule) of unextracted organelles is not increased by cytosol. Unextracted organelles move in single directions, approximately two thirds toward the plus-end and one third toward the minus-end of microtubules. Extraction of organelles with 600 mM KI completely inhibits minus-end, but not plus-end directed organelle movement. Upon addition of cytosol, minus-end directed movement of KI organelles is restored, while plus-end directed movement is unaffected. Biochemical studies indicate that KI-extracted organelles attach to microtubules in the presence of AMP-PNP and copurify with tightly bound kinesin. The bound kinesin is not extracted from organelles by 1 M KI, 1 M NaCl or carbonate (pH 11.3). These results suggest that kinesin is irreversibly bound to organelles that move to the plus-end of microtubules and that the presence of soluble kinesin and accessory factors is not required for movement of plus-end organelles in squid axons.",
author = "Bruce Schnapp and Reese, {Thomas S.} and Ruth Bechtold",
year = "1992",
month = "10",
language = "English (US)",
volume = "119",
pages = "389--399",
journal = "Journal of Cell Biology",
issn = "0021-9525",
publisher = "Rockefeller University Press",
number = "2",

}

TY - JOUR

T1 - Kinesin is bound with high affinity to squid axon organelles that move to the plus-end of microtubules

AU - Schnapp, Bruce

AU - Reese, Thomas S.

AU - Bechtold, Ruth

PY - 1992/10

Y1 - 1992/10

N2 - This paper addresses the question of whether microtubule-directed transport of vesicular organelles depends on the presence of a pool of cytosolic factors, including soluble motor proteins and accessory factors. Earlier studies with squid axon organelles (Schroer et al., 1988) suggested that the presence of cytosol induces a >20-fold increase in the number of organelles moving per unit time on microtubules in vitro. These earlier studies, however, did not consider that cytosol might nonspecifically increase the numbers of moving organelles, i.e., by blocking adsorption of organelles to the coverglass. Here we report that treatment of the coverglass with casein, in the absence of cytosol, blocks adsorption of organelles to the coverglass and results in vigorous movement of vesicular organelles in the complete absence of soluble proteins. This technical improvement makes it possible, for the first time, to perform quantitative studies of organelle movement in the absence of cytosol. These new studies show that organelle movement activity (numbers of moving organelles/min/ μm microtubule) of unextracted organelles is not increased by cytosol. Unextracted organelles move in single directions, approximately two thirds toward the plus-end and one third toward the minus-end of microtubules. Extraction of organelles with 600 mM KI completely inhibits minus-end, but not plus-end directed organelle movement. Upon addition of cytosol, minus-end directed movement of KI organelles is restored, while plus-end directed movement is unaffected. Biochemical studies indicate that KI-extracted organelles attach to microtubules in the presence of AMP-PNP and copurify with tightly bound kinesin. The bound kinesin is not extracted from organelles by 1 M KI, 1 M NaCl or carbonate (pH 11.3). These results suggest that kinesin is irreversibly bound to organelles that move to the plus-end of microtubules and that the presence of soluble kinesin and accessory factors is not required for movement of plus-end organelles in squid axons.

AB - This paper addresses the question of whether microtubule-directed transport of vesicular organelles depends on the presence of a pool of cytosolic factors, including soluble motor proteins and accessory factors. Earlier studies with squid axon organelles (Schroer et al., 1988) suggested that the presence of cytosol induces a >20-fold increase in the number of organelles moving per unit time on microtubules in vitro. These earlier studies, however, did not consider that cytosol might nonspecifically increase the numbers of moving organelles, i.e., by blocking adsorption of organelles to the coverglass. Here we report that treatment of the coverglass with casein, in the absence of cytosol, blocks adsorption of organelles to the coverglass and results in vigorous movement of vesicular organelles in the complete absence of soluble proteins. This technical improvement makes it possible, for the first time, to perform quantitative studies of organelle movement in the absence of cytosol. These new studies show that organelle movement activity (numbers of moving organelles/min/ μm microtubule) of unextracted organelles is not increased by cytosol. Unextracted organelles move in single directions, approximately two thirds toward the plus-end and one third toward the minus-end of microtubules. Extraction of organelles with 600 mM KI completely inhibits minus-end, but not plus-end directed organelle movement. Upon addition of cytosol, minus-end directed movement of KI organelles is restored, while plus-end directed movement is unaffected. Biochemical studies indicate that KI-extracted organelles attach to microtubules in the presence of AMP-PNP and copurify with tightly bound kinesin. The bound kinesin is not extracted from organelles by 1 M KI, 1 M NaCl or carbonate (pH 11.3). These results suggest that kinesin is irreversibly bound to organelles that move to the plus-end of microtubules and that the presence of soluble kinesin and accessory factors is not required for movement of plus-end organelles in squid axons.

UR - http://www.scopus.com/inward/record.url?scp=0026699925&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=0026699925&partnerID=8YFLogxK

M3 - Article

C2 - 1400582

AN - SCOPUS:0026699925

VL - 119

SP - 389

EP - 399

JO - Journal of Cell Biology

JF - Journal of Cell Biology

SN - 0021-9525

IS - 2

ER -