Insulin-like growth factor-I (IGF-I) and retinoic acid modulation of IGF-binding proteins (IGFBPs): IGFBP-2, -3, and -4 gene expression and protein secretion in a breast cancer cell line

Martin L. Adamo, Zhi Ming Shao, Fabienne Lanau, Jian Chyi Chen, David R. Clemmons, Charles Roberts, Derek Leroith, Joseph A. Fontana

Research output: Contribution to journalArticle

102 Citations (Scopus)

Abstract

Retinoic acid (RA) blocks insulin-like growth factor-I (IGF-I) stimulation of proliferation in the MCF-7 breast carcinoma cell line, and this is associated with the appearance of 42- to 46-kilodalton (kDa) IGF-binding proteins(s) (IGFBPs) in the conditioned medium (CM), in addition to the approximately 34- and 27-kDa IGFBPs present in the CM of unstimulated cells. Using immunological, biochemical, and molecular biological criteria, we have identified the 27-kDa band as IGFBP-4, the 34-kDa band as IGFBP-2, and the 42- to 46-kDa band as IGFBP-3. IGF-I alone stimulated MCF-7 cell proliferation, and this was associated with a large increase in IGFBP-2 in the CM. RA alone resulted in increased IGFBP-4 levels and the appearance of IGFBP-3 in the CM. The combination of RA and IGF-I, which resulted in decreased cellular proliferation, was associated with the appearance of IGFBP-3 in the CM at levels far exceeding those seen with RA alone. The effect of IGF-I on IGFBP-2 levels and the synergistic action of IGF-I and RA on IGFBP-3 levels in CM were blocked by αIR3, a monoclonal antibody to the human IGF-I receptor, indicating that these effects required signal transduction through the IGF-I receptor. IGFBP-2, -3, and -4 mRNAs were detected in unstimulated MCF-7 cells. RA increased IGFBP-3 mRNA levels, suggesting that transcriptional events contribute to the RA stimulation of IGFBP-3 appearance in CM. In contrast, the increase in IGFBP-2 protein in CM after IGF-I treatment appeared to be greater than the increase in IGFBP-2 mRNA levels. The increase in IGFBP-3 protein in CM in response to the combination of RA and IGF-I was much greater than the increase in IGFBP-3 mRNA. These results suggest that the action of RA and IGF-I in combination to increase IGFBP-3 protein in CM is principally translational or posttranslational. We speculate that RA inhibition of IGF-I-stimulated MCF-7 cell proliferation may be due to IGFBP-3, or that increased levels of IGFBP-3 in response to growth inhibition represent a compensatory response.

Original languageEnglish (US)
Pages (from-to)1858-1866
Number of pages9
JournalEndocrinology
Volume131
Issue number4
StatePublished - Oct 1992
Externally publishedYes

Fingerprint

Insulin-Like Growth Factor Binding Protein 2
Insulin-Like Growth Factor Binding Proteins
Insulin-Like Growth Factor Binding Protein 3
Tretinoin
Insulin-Like Growth Factor I
Protein Binding
Conditioned Culture Medium
Breast Neoplasms
Gene Expression
Cell Line
Proteins
MCF-7 Cells
Insulin-Like Growth Factor Binding Protein 4
IGF Type 1 Receptor
Messenger RNA
Cell Proliferation
Signal Transduction

ASJC Scopus subject areas

  • Endocrinology
  • Endocrinology, Diabetes and Metabolism

Cite this

Insulin-like growth factor-I (IGF-I) and retinoic acid modulation of IGF-binding proteins (IGFBPs) : IGFBP-2, -3, and -4 gene expression and protein secretion in a breast cancer cell line. / Adamo, Martin L.; Shao, Zhi Ming; Lanau, Fabienne; Chen, Jian Chyi; Clemmons, David R.; Roberts, Charles; Leroith, Derek; Fontana, Joseph A.

In: Endocrinology, Vol. 131, No. 4, 10.1992, p. 1858-1866.

Research output: Contribution to journalArticle

Adamo, Martin L. ; Shao, Zhi Ming ; Lanau, Fabienne ; Chen, Jian Chyi ; Clemmons, David R. ; Roberts, Charles ; Leroith, Derek ; Fontana, Joseph A. / Insulin-like growth factor-I (IGF-I) and retinoic acid modulation of IGF-binding proteins (IGFBPs) : IGFBP-2, -3, and -4 gene expression and protein secretion in a breast cancer cell line. In: Endocrinology. 1992 ; Vol. 131, No. 4. pp. 1858-1866.
@article{3d4129f020bd422a8e7949326dea686c,
title = "Insulin-like growth factor-I (IGF-I) and retinoic acid modulation of IGF-binding proteins (IGFBPs): IGFBP-2, -3, and -4 gene expression and protein secretion in a breast cancer cell line",
abstract = "Retinoic acid (RA) blocks insulin-like growth factor-I (IGF-I) stimulation of proliferation in the MCF-7 breast carcinoma cell line, and this is associated with the appearance of 42- to 46-kilodalton (kDa) IGF-binding proteins(s) (IGFBPs) in the conditioned medium (CM), in addition to the approximately 34- and 27-kDa IGFBPs present in the CM of unstimulated cells. Using immunological, biochemical, and molecular biological criteria, we have identified the 27-kDa band as IGFBP-4, the 34-kDa band as IGFBP-2, and the 42- to 46-kDa band as IGFBP-3. IGF-I alone stimulated MCF-7 cell proliferation, and this was associated with a large increase in IGFBP-2 in the CM. RA alone resulted in increased IGFBP-4 levels and the appearance of IGFBP-3 in the CM. The combination of RA and IGF-I, which resulted in decreased cellular proliferation, was associated with the appearance of IGFBP-3 in the CM at levels far exceeding those seen with RA alone. The effect of IGF-I on IGFBP-2 levels and the synergistic action of IGF-I and RA on IGFBP-3 levels in CM were blocked by αIR3, a monoclonal antibody to the human IGF-I receptor, indicating that these effects required signal transduction through the IGF-I receptor. IGFBP-2, -3, and -4 mRNAs were detected in unstimulated MCF-7 cells. RA increased IGFBP-3 mRNA levels, suggesting that transcriptional events contribute to the RA stimulation of IGFBP-3 appearance in CM. In contrast, the increase in IGFBP-2 protein in CM after IGF-I treatment appeared to be greater than the increase in IGFBP-2 mRNA levels. The increase in IGFBP-3 protein in CM in response to the combination of RA and IGF-I was much greater than the increase in IGFBP-3 mRNA. These results suggest that the action of RA and IGF-I in combination to increase IGFBP-3 protein in CM is principally translational or posttranslational. We speculate that RA inhibition of IGF-I-stimulated MCF-7 cell proliferation may be due to IGFBP-3, or that increased levels of IGFBP-3 in response to growth inhibition represent a compensatory response.",
author = "Adamo, {Martin L.} and Shao, {Zhi Ming} and Fabienne Lanau and Chen, {Jian Chyi} and Clemmons, {David R.} and Charles Roberts and Derek Leroith and Fontana, {Joseph A.}",
year = "1992",
month = "10",
language = "English (US)",
volume = "131",
pages = "1858--1866",
journal = "Endocrinology",
issn = "0013-7227",
publisher = "The Endocrine Society",
number = "4",

}

TY - JOUR

T1 - Insulin-like growth factor-I (IGF-I) and retinoic acid modulation of IGF-binding proteins (IGFBPs)

T2 - IGFBP-2, -3, and -4 gene expression and protein secretion in a breast cancer cell line

AU - Adamo, Martin L.

AU - Shao, Zhi Ming

AU - Lanau, Fabienne

AU - Chen, Jian Chyi

AU - Clemmons, David R.

AU - Roberts, Charles

AU - Leroith, Derek

AU - Fontana, Joseph A.

PY - 1992/10

Y1 - 1992/10

N2 - Retinoic acid (RA) blocks insulin-like growth factor-I (IGF-I) stimulation of proliferation in the MCF-7 breast carcinoma cell line, and this is associated with the appearance of 42- to 46-kilodalton (kDa) IGF-binding proteins(s) (IGFBPs) in the conditioned medium (CM), in addition to the approximately 34- and 27-kDa IGFBPs present in the CM of unstimulated cells. Using immunological, biochemical, and molecular biological criteria, we have identified the 27-kDa band as IGFBP-4, the 34-kDa band as IGFBP-2, and the 42- to 46-kDa band as IGFBP-3. IGF-I alone stimulated MCF-7 cell proliferation, and this was associated with a large increase in IGFBP-2 in the CM. RA alone resulted in increased IGFBP-4 levels and the appearance of IGFBP-3 in the CM. The combination of RA and IGF-I, which resulted in decreased cellular proliferation, was associated with the appearance of IGFBP-3 in the CM at levels far exceeding those seen with RA alone. The effect of IGF-I on IGFBP-2 levels and the synergistic action of IGF-I and RA on IGFBP-3 levels in CM were blocked by αIR3, a monoclonal antibody to the human IGF-I receptor, indicating that these effects required signal transduction through the IGF-I receptor. IGFBP-2, -3, and -4 mRNAs were detected in unstimulated MCF-7 cells. RA increased IGFBP-3 mRNA levels, suggesting that transcriptional events contribute to the RA stimulation of IGFBP-3 appearance in CM. In contrast, the increase in IGFBP-2 protein in CM after IGF-I treatment appeared to be greater than the increase in IGFBP-2 mRNA levels. The increase in IGFBP-3 protein in CM in response to the combination of RA and IGF-I was much greater than the increase in IGFBP-3 mRNA. These results suggest that the action of RA and IGF-I in combination to increase IGFBP-3 protein in CM is principally translational or posttranslational. We speculate that RA inhibition of IGF-I-stimulated MCF-7 cell proliferation may be due to IGFBP-3, or that increased levels of IGFBP-3 in response to growth inhibition represent a compensatory response.

AB - Retinoic acid (RA) blocks insulin-like growth factor-I (IGF-I) stimulation of proliferation in the MCF-7 breast carcinoma cell line, and this is associated with the appearance of 42- to 46-kilodalton (kDa) IGF-binding proteins(s) (IGFBPs) in the conditioned medium (CM), in addition to the approximately 34- and 27-kDa IGFBPs present in the CM of unstimulated cells. Using immunological, biochemical, and molecular biological criteria, we have identified the 27-kDa band as IGFBP-4, the 34-kDa band as IGFBP-2, and the 42- to 46-kDa band as IGFBP-3. IGF-I alone stimulated MCF-7 cell proliferation, and this was associated with a large increase in IGFBP-2 in the CM. RA alone resulted in increased IGFBP-4 levels and the appearance of IGFBP-3 in the CM. The combination of RA and IGF-I, which resulted in decreased cellular proliferation, was associated with the appearance of IGFBP-3 in the CM at levels far exceeding those seen with RA alone. The effect of IGF-I on IGFBP-2 levels and the synergistic action of IGF-I and RA on IGFBP-3 levels in CM were blocked by αIR3, a monoclonal antibody to the human IGF-I receptor, indicating that these effects required signal transduction through the IGF-I receptor. IGFBP-2, -3, and -4 mRNAs were detected in unstimulated MCF-7 cells. RA increased IGFBP-3 mRNA levels, suggesting that transcriptional events contribute to the RA stimulation of IGFBP-3 appearance in CM. In contrast, the increase in IGFBP-2 protein in CM after IGF-I treatment appeared to be greater than the increase in IGFBP-2 mRNA levels. The increase in IGFBP-3 protein in CM in response to the combination of RA and IGF-I was much greater than the increase in IGFBP-3 mRNA. These results suggest that the action of RA and IGF-I in combination to increase IGFBP-3 protein in CM is principally translational or posttranslational. We speculate that RA inhibition of IGF-I-stimulated MCF-7 cell proliferation may be due to IGFBP-3, or that increased levels of IGFBP-3 in response to growth inhibition represent a compensatory response.

UR - http://www.scopus.com/inward/record.url?scp=0026726478&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=0026726478&partnerID=8YFLogxK

M3 - Article

C2 - 1382963

AN - SCOPUS:0026726478

VL - 131

SP - 1858

EP - 1866

JO - Endocrinology

JF - Endocrinology

SN - 0013-7227

IS - 4

ER -