Increased Coronary Tortuosity Is Associated with Increased Left Ventricular Longitudinal Myocardial Shortening

Research output: Contribution to journalArticle

3 Citations (Scopus)

Abstract

Background: The mechanistic basis for tortuosity of the coronary arteries (TCA) is unclear. The aim of this study was to test the hypothesis that the relative degree of systolic longitudinal shortening of the left ventricle that deforms coaxially oriented coronary arteries is associated with TCA. Methods: Adult subjects undergoing coronary angiography and comprehensive echocardiography within 3 months were classified dichotomously as with (n = 32) or without (n = 42) TCA defined on the basis of number and severity of coronary angles. Systolic left ventricular (LV) longitudinal deformation was determined by mitral annular plane systolic excursion (MAPSE) from both B-mode displacement and tissue Doppler time-velocity integral; data were indexed to LV diastolic long-axis length. Results: There were no differences between groups with respect to age, gender, hypertension, or coronary artery disease. Patients with TCA had significantly (P < .01) lower LV mass index and a shorter total LV diastolic long-axis length (mean, 8.3 ± 1.9 vs 9.1 ± 2.2 cm; P < .01). Despite having a shorter length, those with TCA had greater MAPSE by both methods. MAPSE normalized to diastolic length was significantly greater (P < .01) in those with TCA, which remained the case after excluding subjects with reduced LV ejection fraction. Multiple linear regression found that lateral annular MAPSE had the largest effect size, with a 13-fold increase in likelihood for TCA for every 0.1 of normalized MAPSE. Conclusions: TCA is not associated with increased LV mass but rather with smaller hearts that have greater relative longitudinal shortening of the left ventricle. This finding suggests that TCA could represent an adaptive response to longitudinal systolic distortion of coaxially oriented coronary arteries that dynamically produce shear stresses associated with expansive coronary remodeling.

Original languageEnglish (US)
JournalJournal of the American Society of Echocardiography
DOIs
StateAccepted/In press - 2017

Fingerprint

Coronary Vessels
Heart Ventricles
Coronary Angiography
Stroke Volume
Echocardiography
Coronary Artery Disease
Linear Models
Hypertension

Keywords

  • Coronary anatomy
  • Coronary tortuosity
  • Longitudinal shortening

ASJC Scopus subject areas

  • Radiology Nuclear Medicine and imaging
  • Cardiology and Cardiovascular Medicine

Cite this

@article{9c4764b3606a4806a05b8ae4d57b1077,
title = "Increased Coronary Tortuosity Is Associated with Increased Left Ventricular Longitudinal Myocardial Shortening",
abstract = "Background: The mechanistic basis for tortuosity of the coronary arteries (TCA) is unclear. The aim of this study was to test the hypothesis that the relative degree of systolic longitudinal shortening of the left ventricle that deforms coaxially oriented coronary arteries is associated with TCA. Methods: Adult subjects undergoing coronary angiography and comprehensive echocardiography within 3 months were classified dichotomously as with (n = 32) or without (n = 42) TCA defined on the basis of number and severity of coronary angles. Systolic left ventricular (LV) longitudinal deformation was determined by mitral annular plane systolic excursion (MAPSE) from both B-mode displacement and tissue Doppler time-velocity integral; data were indexed to LV diastolic long-axis length. Results: There were no differences between groups with respect to age, gender, hypertension, or coronary artery disease. Patients with TCA had significantly (P < .01) lower LV mass index and a shorter total LV diastolic long-axis length (mean, 8.3 ± 1.9 vs 9.1 ± 2.2 cm; P < .01). Despite having a shorter length, those with TCA had greater MAPSE by both methods. MAPSE normalized to diastolic length was significantly greater (P < .01) in those with TCA, which remained the case after excluding subjects with reduced LV ejection fraction. Multiple linear regression found that lateral annular MAPSE had the largest effect size, with a 13-fold increase in likelihood for TCA for every 0.1 of normalized MAPSE. Conclusions: TCA is not associated with increased LV mass but rather with smaller hearts that have greater relative longitudinal shortening of the left ventricle. This finding suggests that TCA could represent an adaptive response to longitudinal systolic distortion of coaxially oriented coronary arteries that dynamically produce shear stresses associated with expansive coronary remodeling.",
keywords = "Coronary anatomy, Coronary tortuosity, Longitudinal shortening",
author = "Oehler, {Andrew C.} and Jessica Minnier and Jonathan Lindner",
year = "2017",
doi = "10.1016/j.echo.2017.06.007",
language = "English (US)",
journal = "Journal of the American Society of Echocardiography",
issn = "0894-7317",
publisher = "Mosby Inc.",

}

TY - JOUR

T1 - Increased Coronary Tortuosity Is Associated with Increased Left Ventricular Longitudinal Myocardial Shortening

AU - Oehler, Andrew C.

AU - Minnier, Jessica

AU - Lindner, Jonathan

PY - 2017

Y1 - 2017

N2 - Background: The mechanistic basis for tortuosity of the coronary arteries (TCA) is unclear. The aim of this study was to test the hypothesis that the relative degree of systolic longitudinal shortening of the left ventricle that deforms coaxially oriented coronary arteries is associated with TCA. Methods: Adult subjects undergoing coronary angiography and comprehensive echocardiography within 3 months were classified dichotomously as with (n = 32) or without (n = 42) TCA defined on the basis of number and severity of coronary angles. Systolic left ventricular (LV) longitudinal deformation was determined by mitral annular plane systolic excursion (MAPSE) from both B-mode displacement and tissue Doppler time-velocity integral; data were indexed to LV diastolic long-axis length. Results: There were no differences between groups with respect to age, gender, hypertension, or coronary artery disease. Patients with TCA had significantly (P < .01) lower LV mass index and a shorter total LV diastolic long-axis length (mean, 8.3 ± 1.9 vs 9.1 ± 2.2 cm; P < .01). Despite having a shorter length, those with TCA had greater MAPSE by both methods. MAPSE normalized to diastolic length was significantly greater (P < .01) in those with TCA, which remained the case after excluding subjects with reduced LV ejection fraction. Multiple linear regression found that lateral annular MAPSE had the largest effect size, with a 13-fold increase in likelihood for TCA for every 0.1 of normalized MAPSE. Conclusions: TCA is not associated with increased LV mass but rather with smaller hearts that have greater relative longitudinal shortening of the left ventricle. This finding suggests that TCA could represent an adaptive response to longitudinal systolic distortion of coaxially oriented coronary arteries that dynamically produce shear stresses associated with expansive coronary remodeling.

AB - Background: The mechanistic basis for tortuosity of the coronary arteries (TCA) is unclear. The aim of this study was to test the hypothesis that the relative degree of systolic longitudinal shortening of the left ventricle that deforms coaxially oriented coronary arteries is associated with TCA. Methods: Adult subjects undergoing coronary angiography and comprehensive echocardiography within 3 months were classified dichotomously as with (n = 32) or without (n = 42) TCA defined on the basis of number and severity of coronary angles. Systolic left ventricular (LV) longitudinal deformation was determined by mitral annular plane systolic excursion (MAPSE) from both B-mode displacement and tissue Doppler time-velocity integral; data were indexed to LV diastolic long-axis length. Results: There were no differences between groups with respect to age, gender, hypertension, or coronary artery disease. Patients with TCA had significantly (P < .01) lower LV mass index and a shorter total LV diastolic long-axis length (mean, 8.3 ± 1.9 vs 9.1 ± 2.2 cm; P < .01). Despite having a shorter length, those with TCA had greater MAPSE by both methods. MAPSE normalized to diastolic length was significantly greater (P < .01) in those with TCA, which remained the case after excluding subjects with reduced LV ejection fraction. Multiple linear regression found that lateral annular MAPSE had the largest effect size, with a 13-fold increase in likelihood for TCA for every 0.1 of normalized MAPSE. Conclusions: TCA is not associated with increased LV mass but rather with smaller hearts that have greater relative longitudinal shortening of the left ventricle. This finding suggests that TCA could represent an adaptive response to longitudinal systolic distortion of coaxially oriented coronary arteries that dynamically produce shear stresses associated with expansive coronary remodeling.

KW - Coronary anatomy

KW - Coronary tortuosity

KW - Longitudinal shortening

UR - http://www.scopus.com/inward/record.url?scp=85028081512&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=85028081512&partnerID=8YFLogxK

U2 - 10.1016/j.echo.2017.06.007

DO - 10.1016/j.echo.2017.06.007

M3 - Article

C2 - 28781117

AN - SCOPUS:85028081512

JO - Journal of the American Society of Echocardiography

JF - Journal of the American Society of Echocardiography

SN - 0894-7317

ER -