In Vivo Small Molecule Delivery to the Optic Nerve in a Rodent Model

Shandiz Tehrani, R. Katherine Delf, William O. Cepurna, Lauren Davis, Elaine Johnson, John Morrison

Research output: Contribution to journalArticle

1 Scopus citations

Abstract

Small molecule delivery to the optic nerve would allow for exploration of molecular and cellular pathways involved in normal physiology and optic neuropathies such as glaucoma, and provide a tool for screening therapeutics in animal models. We report a novel surgical method for small molecule drug delivery to the optic nerve head (ONH) in a rodent model. In proof-of-principle experiments, we delivered cytochalasin D (Cyt D; a filamentous actin inhibitor) to the junction of the superior optic nerve and globe in rats to target the actin-rich astrocytic cytoskeleton of the ONH. Cyt D delivery was quantified by liquid chromatography and mass spectrometry of isolated optic nerve tissue. One day after Cyt D delivery, anterior ONH filamentous actin bundle content was significantly reduced as assessed by fluorescent-tagged phalloidin labeling, relative to sham delivery. Anterior ONH nuclear counts and axon-specific beta-3 tubulin levels, as well as peripapillary retinal ganglion cell layer nuclear counts were not significantly altered after Cyt D delivery relative to sham delivery. Lastly, the surgical delivery technique caused minimal observable axon degeneration up to 10 days post-surgery. This small molecule delivery technique provides a new approach to studying optic neuropathies in in vivo rodent models.

Original languageEnglish (US)
Article number4453
JournalScientific Reports
Volume8
Issue number1
DOIs
Publication statusPublished - Dec 1 2018

    Fingerprint

ASJC Scopus subject areas

  • General

Cite this