Glucose and potassium metabolic responses to insulin during liver transplantation

Robert Shangraw, J. G. Hexem

Research output: Contribution to journalArticle

25 Citations (Scopus)

Abstract

Insulin regulates glucose and potassium metabolism by acting differently upon peripheral tissues (e.g., skeletal muscle) and the splanchnic bed, including the liver. Liver disease is accompanied by 'insulin resistance' of glucose metabolism, whereby glucose intolerance occurs despite relatively increased plasma insulin concentration. However, it is unknown whether insulin resistance extends to potassium metabolism. Further, it is uncertain whether the hyperglycemia and alterations of plasma potassium concentration observed during liver transplantation result from changes in circulating insulin concentration, altered sensitivity to insulin, or both, as the diseased liver is removed and replaced with a graft organ. The present study evaluated the role of the liver in maximal insulin responsiveness of whole- body glucose and potassium metabolism, using a hyperinsulinemic clamp technique, to identify the mechanism(s) underlying post-reperfusion hyperglycemia and intraoperative hyperkalemia. Two protocols were employed: In protocol 1 (n = 10), no exogenous insulin was administered. In protocol 2 (n = 10), an intravenous insulin bolus (666 mU · kg-1) was administered after anesthesia induction, followed by an infusion at 500 mU · m-2 · min-1, which continued until 3 hours after portal vein unclamping. Plasma concentrations of glucose and potassium were regulated by glucose and potassium chloride infusion (euglycemic eukalemic clamp). Insulin-stimulated exogenous glucose and potassium uptakes were determined in protocol 2 before skin incision and during the dissection, anhepatic, and neohepatic stages. In both protocols, serial measurements of hemodynamic arterial blood gases, glucose, free fatty acids, potassium, insulin, and glucagon concentrations were made. Without insulin (protocol 1), progressive hyperglycemia peaked after portal vein unclamping (post-reperfusion hyperglycemia), with no concomitant decrease in plasma insulin concentration. Intraoperative plasma potassium concentration did not change. Insulin infusion (protocol 2) produced a stable hyperinsulinemia (~2000 μU/mL). Hyperinsulinemia did not eliminate post-reperfusion hyperglycemia. Insulin-stimulated glucose uptake, in mg · kg-1 · min-1, was 8.10 ± 0.76 (mean ± SE) before skin incision, 7.62 ± 0.82 during the hepatic dissection, 4.40 ± 0.75 during the anhepatic stage, and 4.06 ± 0.74 at 3 hours after portal vein unclamping. Insulin-stimulated potassium uptake, in mEq · kg-1 · hr-1, was 0.24 ± 0.02 before skin incision, 0.21 ± 0.04 during hepatic dissection, 0.07 ± 0.02 during the anhepatic stage, and 0.21 ± 0.04 and 0.19 ± 0.05 at 30 minutes and 3 hours, respectively, after portal vein unclamping. We conclude that post-reperfusion hyperglycemia is not clue to inadequate insulin stimulation. Liver disease-induced insulin resistance of glucose metabolism is exacerbated by hepatectomy and is not reversed during the intraoperative neohepatic stage. Liver disease does not impair maximal insulin-stimulated potassium uptake. The liver, even with end-stage disease, accounts for ~70% of insulin-stimulated potassium uptake.

Original languageEnglish (US)
Pages (from-to)443-454
Number of pages12
JournalLiver Transplantation and Surgery
Volume2
Issue number6
StatePublished - 1996

Fingerprint

Liver Transplantation
Potassium
Insulin
Glucose
Hyperglycemia
Portal Vein
Reperfusion
Insulin Resistance
Liver Diseases
Liver
Dissection
Hyperinsulinism
Skin
Hyperkalemia
Glucose Clamp Technique
Glucose Intolerance
Viscera
Potassium Chloride
Hepatectomy
Glucagon

ASJC Scopus subject areas

  • Hepatology
  • Surgery

Cite this

Glucose and potassium metabolic responses to insulin during liver transplantation. / Shangraw, Robert; Hexem, J. G.

In: Liver Transplantation and Surgery, Vol. 2, No. 6, 1996, p. 443-454.

Research output: Contribution to journalArticle

@article{97dba87525734d0f93696ce5ddc79698,
title = "Glucose and potassium metabolic responses to insulin during liver transplantation",
abstract = "Insulin regulates glucose and potassium metabolism by acting differently upon peripheral tissues (e.g., skeletal muscle) and the splanchnic bed, including the liver. Liver disease is accompanied by 'insulin resistance' of glucose metabolism, whereby glucose intolerance occurs despite relatively increased plasma insulin concentration. However, it is unknown whether insulin resistance extends to potassium metabolism. Further, it is uncertain whether the hyperglycemia and alterations of plasma potassium concentration observed during liver transplantation result from changes in circulating insulin concentration, altered sensitivity to insulin, or both, as the diseased liver is removed and replaced with a graft organ. The present study evaluated the role of the liver in maximal insulin responsiveness of whole- body glucose and potassium metabolism, using a hyperinsulinemic clamp technique, to identify the mechanism(s) underlying post-reperfusion hyperglycemia and intraoperative hyperkalemia. Two protocols were employed: In protocol 1 (n = 10), no exogenous insulin was administered. In protocol 2 (n = 10), an intravenous insulin bolus (666 mU · kg-1) was administered after anesthesia induction, followed by an infusion at 500 mU · m-2 · min-1, which continued until 3 hours after portal vein unclamping. Plasma concentrations of glucose and potassium were regulated by glucose and potassium chloride infusion (euglycemic eukalemic clamp). Insulin-stimulated exogenous glucose and potassium uptakes were determined in protocol 2 before skin incision and during the dissection, anhepatic, and neohepatic stages. In both protocols, serial measurements of hemodynamic arterial blood gases, glucose, free fatty acids, potassium, insulin, and glucagon concentrations were made. Without insulin (protocol 1), progressive hyperglycemia peaked after portal vein unclamping (post-reperfusion hyperglycemia), with no concomitant decrease in plasma insulin concentration. Intraoperative plasma potassium concentration did not change. Insulin infusion (protocol 2) produced a stable hyperinsulinemia (~2000 μU/mL). Hyperinsulinemia did not eliminate post-reperfusion hyperglycemia. Insulin-stimulated glucose uptake, in mg · kg-1 · min-1, was 8.10 ± 0.76 (mean ± SE) before skin incision, 7.62 ± 0.82 during the hepatic dissection, 4.40 ± 0.75 during the anhepatic stage, and 4.06 ± 0.74 at 3 hours after portal vein unclamping. Insulin-stimulated potassium uptake, in mEq · kg-1 · hr-1, was 0.24 ± 0.02 before skin incision, 0.21 ± 0.04 during hepatic dissection, 0.07 ± 0.02 during the anhepatic stage, and 0.21 ± 0.04 and 0.19 ± 0.05 at 30 minutes and 3 hours, respectively, after portal vein unclamping. We conclude that post-reperfusion hyperglycemia is not clue to inadequate insulin stimulation. Liver disease-induced insulin resistance of glucose metabolism is exacerbated by hepatectomy and is not reversed during the intraoperative neohepatic stage. Liver disease does not impair maximal insulin-stimulated potassium uptake. The liver, even with end-stage disease, accounts for ~70{\%} of insulin-stimulated potassium uptake.",
author = "Robert Shangraw and Hexem, {J. G.}",
year = "1996",
language = "English (US)",
volume = "2",
pages = "443--454",
journal = "Liver Transplantation",
issn = "1527-6465",
publisher = "John Wiley and Sons Ltd",
number = "6",

}

TY - JOUR

T1 - Glucose and potassium metabolic responses to insulin during liver transplantation

AU - Shangraw, Robert

AU - Hexem, J. G.

PY - 1996

Y1 - 1996

N2 - Insulin regulates glucose and potassium metabolism by acting differently upon peripheral tissues (e.g., skeletal muscle) and the splanchnic bed, including the liver. Liver disease is accompanied by 'insulin resistance' of glucose metabolism, whereby glucose intolerance occurs despite relatively increased plasma insulin concentration. However, it is unknown whether insulin resistance extends to potassium metabolism. Further, it is uncertain whether the hyperglycemia and alterations of plasma potassium concentration observed during liver transplantation result from changes in circulating insulin concentration, altered sensitivity to insulin, or both, as the diseased liver is removed and replaced with a graft organ. The present study evaluated the role of the liver in maximal insulin responsiveness of whole- body glucose and potassium metabolism, using a hyperinsulinemic clamp technique, to identify the mechanism(s) underlying post-reperfusion hyperglycemia and intraoperative hyperkalemia. Two protocols were employed: In protocol 1 (n = 10), no exogenous insulin was administered. In protocol 2 (n = 10), an intravenous insulin bolus (666 mU · kg-1) was administered after anesthesia induction, followed by an infusion at 500 mU · m-2 · min-1, which continued until 3 hours after portal vein unclamping. Plasma concentrations of glucose and potassium were regulated by glucose and potassium chloride infusion (euglycemic eukalemic clamp). Insulin-stimulated exogenous glucose and potassium uptakes were determined in protocol 2 before skin incision and during the dissection, anhepatic, and neohepatic stages. In both protocols, serial measurements of hemodynamic arterial blood gases, glucose, free fatty acids, potassium, insulin, and glucagon concentrations were made. Without insulin (protocol 1), progressive hyperglycemia peaked after portal vein unclamping (post-reperfusion hyperglycemia), with no concomitant decrease in plasma insulin concentration. Intraoperative plasma potassium concentration did not change. Insulin infusion (protocol 2) produced a stable hyperinsulinemia (~2000 μU/mL). Hyperinsulinemia did not eliminate post-reperfusion hyperglycemia. Insulin-stimulated glucose uptake, in mg · kg-1 · min-1, was 8.10 ± 0.76 (mean ± SE) before skin incision, 7.62 ± 0.82 during the hepatic dissection, 4.40 ± 0.75 during the anhepatic stage, and 4.06 ± 0.74 at 3 hours after portal vein unclamping. Insulin-stimulated potassium uptake, in mEq · kg-1 · hr-1, was 0.24 ± 0.02 before skin incision, 0.21 ± 0.04 during hepatic dissection, 0.07 ± 0.02 during the anhepatic stage, and 0.21 ± 0.04 and 0.19 ± 0.05 at 30 minutes and 3 hours, respectively, after portal vein unclamping. We conclude that post-reperfusion hyperglycemia is not clue to inadequate insulin stimulation. Liver disease-induced insulin resistance of glucose metabolism is exacerbated by hepatectomy and is not reversed during the intraoperative neohepatic stage. Liver disease does not impair maximal insulin-stimulated potassium uptake. The liver, even with end-stage disease, accounts for ~70% of insulin-stimulated potassium uptake.

AB - Insulin regulates glucose and potassium metabolism by acting differently upon peripheral tissues (e.g., skeletal muscle) and the splanchnic bed, including the liver. Liver disease is accompanied by 'insulin resistance' of glucose metabolism, whereby glucose intolerance occurs despite relatively increased plasma insulin concentration. However, it is unknown whether insulin resistance extends to potassium metabolism. Further, it is uncertain whether the hyperglycemia and alterations of plasma potassium concentration observed during liver transplantation result from changes in circulating insulin concentration, altered sensitivity to insulin, or both, as the diseased liver is removed and replaced with a graft organ. The present study evaluated the role of the liver in maximal insulin responsiveness of whole- body glucose and potassium metabolism, using a hyperinsulinemic clamp technique, to identify the mechanism(s) underlying post-reperfusion hyperglycemia and intraoperative hyperkalemia. Two protocols were employed: In protocol 1 (n = 10), no exogenous insulin was administered. In protocol 2 (n = 10), an intravenous insulin bolus (666 mU · kg-1) was administered after anesthesia induction, followed by an infusion at 500 mU · m-2 · min-1, which continued until 3 hours after portal vein unclamping. Plasma concentrations of glucose and potassium were regulated by glucose and potassium chloride infusion (euglycemic eukalemic clamp). Insulin-stimulated exogenous glucose and potassium uptakes were determined in protocol 2 before skin incision and during the dissection, anhepatic, and neohepatic stages. In both protocols, serial measurements of hemodynamic arterial blood gases, glucose, free fatty acids, potassium, insulin, and glucagon concentrations were made. Without insulin (protocol 1), progressive hyperglycemia peaked after portal vein unclamping (post-reperfusion hyperglycemia), with no concomitant decrease in plasma insulin concentration. Intraoperative plasma potassium concentration did not change. Insulin infusion (protocol 2) produced a stable hyperinsulinemia (~2000 μU/mL). Hyperinsulinemia did not eliminate post-reperfusion hyperglycemia. Insulin-stimulated glucose uptake, in mg · kg-1 · min-1, was 8.10 ± 0.76 (mean ± SE) before skin incision, 7.62 ± 0.82 during the hepatic dissection, 4.40 ± 0.75 during the anhepatic stage, and 4.06 ± 0.74 at 3 hours after portal vein unclamping. Insulin-stimulated potassium uptake, in mEq · kg-1 · hr-1, was 0.24 ± 0.02 before skin incision, 0.21 ± 0.04 during hepatic dissection, 0.07 ± 0.02 during the anhepatic stage, and 0.21 ± 0.04 and 0.19 ± 0.05 at 30 minutes and 3 hours, respectively, after portal vein unclamping. We conclude that post-reperfusion hyperglycemia is not clue to inadequate insulin stimulation. Liver disease-induced insulin resistance of glucose metabolism is exacerbated by hepatectomy and is not reversed during the intraoperative neohepatic stage. Liver disease does not impair maximal insulin-stimulated potassium uptake. The liver, even with end-stage disease, accounts for ~70% of insulin-stimulated potassium uptake.

UR - http://www.scopus.com/inward/record.url?scp=0029856064&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=0029856064&partnerID=8YFLogxK

M3 - Article

C2 - 9346691

AN - SCOPUS:0029856064

VL - 2

SP - 443

EP - 454

JO - Liver Transplantation

JF - Liver Transplantation

SN - 1527-6465

IS - 6

ER -