Feasibility of continuous long-term glucose monitoring from a subcutaneous glucose sensor in humans

Barbara J. Gilligan, Mark C. Shults, Rathbun K. Rhodes, Peter G. Jacobs, James H. Brauker, Thomas J. Pintar, Stuart J. Updike

Research output: Contribution to journalArticle

56 Scopus citations

Abstract

The feasibility of continuous long-term glucose monitoring in humans has not yet been demonstrated. Enzyme-based electrochemical glucose sensors with telemetric output were subcutaneously implanted and evaluated in five human subjects with type I diabetes. Subject-worn radio-receiver data-loggers stored sensor outputs. Every 1-4 weeks the subject's glucose levels were manipulated through the full clinical range of interest using standard protocols. Reference blood glucose samples were obtained every 5-10 min and analyzed in our hospital clinical laboratory and/or on glucose meters. The sensor data were evaluated versus the reference data by linear least squares regression and by the Clarke Error Grid method. After surgical explantation and device inspection, the tissue-sensor interface was evaluated histologically. The remaining sensor-membranes were also recalibrated for comparison with preimplant performance. Four of the five glucose sensors tracked glucose in vivo. One sensor responded to manipulated glucose changes for 6.2 months with clinically useful performance (≥90% of sensor glucose values within the A and B regions of the Clarke Error Grid). For this sensor, recalibration was required every 1-4 weeks. The other three transiently responding sensors had electronic problems associated with packaging failure. The remaining sensor never tracked glucose because of failure to form any sustained connection to adjacent subcutaneous tissue. Thus, stable, clinically useful sensor performance was demonstrated in one of five subjects with diabetes for a sustained interval of greater than 6 months. While this glucose sensor implant technology shows promise in humans, it needs to be made more reliable and robust with respect to device packaging and sensor-tissue connection.

Original languageEnglish (US)
Pages (from-to)378-386
Number of pages9
JournalDiabetes Technology and Therapeutics
Volume6
Issue number3
DOIs
StatePublished - Jun 1 2004

ASJC Scopus subject areas

  • Endocrinology, Diabetes and Metabolism
  • Endocrinology
  • Medical Laboratory Technology

Fingerprint Dive into the research topics of 'Feasibility of continuous long-term glucose monitoring from a subcutaneous glucose sensor in humans'. Together they form a unique fingerprint.

  • Cite this