Extracellular matrix gene alternative splicing by trabecular meshwork cells in response to mechanical stretching

Research output: Contribution to journalArticle

58 Citations (Scopus)

Abstract

PURPOSE. Elevated intraocular pressure (IOP), sensed as mechanical stretching by trabecular meshwork (TM) cells, triggers extracellular matrix (ECM) remodeling. In addition to changes in gene expression, alternative mRNA splicing may alter ECM protein isoforms. Changes in mRNA expression and alternative splicing of four ECM molecules in response to mechanical stretching of TM cells were investigated. METHODS. Porcine TM cells were mechanically stretched for 12, 24, or 48 hours. RNA was isolated, and RT-PCR was performed with primers that flanked alternatively spliced domains. PCR products were identified by DNA sequencing. Quantitative RT-PCR (qRT-PCR) was performed with primers positioned within nonspliced and spliced regions of the genes. RESULTS. Total levels of tenascin C, collagen type XII, and CD44 mRNA were increased, whereas versican mRNA levels were decreased in response to the mechanical stretch. In addition, each of these genes expressed alternate mRNA isoforms. Transcripts containing the fibronectin type III domain D of tenascin C, the long NC3 isoform of collagen type XII, the V1 isoform of versican, and exons v7 and v8 of CD44 all increased in response to mechanical stretching. A novel isoform of collagen type XII was observed that resulted in deletion of two exons, a frameshift, and a premature stop codon. This isoform was expressed only by stretched TM cells. CONCLUSIONS. These alternative splicing events led to the modulation of potential GAG attachment sites and other ECM-binding motifs. These changes should affect TM cell-ECM and/or protein-protein interactions during the ECM remodeling that occurs coincident with homeostatic restoration of IOP to normal.

Original languageEnglish (US)
Pages (from-to)1164-1172
Number of pages9
JournalInvestigative Ophthalmology and Visual Science
Volume48
Issue number3
DOIs
StatePublished - Mar 2007

Fingerprint

Trabecular Meshwork
Alternative Splicing
Collagen Type XII
Extracellular Matrix
Protein Isoforms
Versicans
Tenascin
Messenger RNA
Genes
Extracellular Matrix Proteins
Intraocular Pressure
Polymerase Chain Reaction
Exons
RNA Isoforms
Dilatation and Curettage
Recombinant DNA
Nonsense Codon
DNA Sequence Analysis
Swine
RNA

ASJC Scopus subject areas

  • Ophthalmology

Cite this

@article{f4c84b66bc4c46af94c92424a6c5236a,
title = "Extracellular matrix gene alternative splicing by trabecular meshwork cells in response to mechanical stretching",
abstract = "PURPOSE. Elevated intraocular pressure (IOP), sensed as mechanical stretching by trabecular meshwork (TM) cells, triggers extracellular matrix (ECM) remodeling. In addition to changes in gene expression, alternative mRNA splicing may alter ECM protein isoforms. Changes in mRNA expression and alternative splicing of four ECM molecules in response to mechanical stretching of TM cells were investigated. METHODS. Porcine TM cells were mechanically stretched for 12, 24, or 48 hours. RNA was isolated, and RT-PCR was performed with primers that flanked alternatively spliced domains. PCR products were identified by DNA sequencing. Quantitative RT-PCR (qRT-PCR) was performed with primers positioned within nonspliced and spliced regions of the genes. RESULTS. Total levels of tenascin C, collagen type XII, and CD44 mRNA were increased, whereas versican mRNA levels were decreased in response to the mechanical stretch. In addition, each of these genes expressed alternate mRNA isoforms. Transcripts containing the fibronectin type III domain D of tenascin C, the long NC3 isoform of collagen type XII, the V1 isoform of versican, and exons v7 and v8 of CD44 all increased in response to mechanical stretching. A novel isoform of collagen type XII was observed that resulted in deletion of two exons, a frameshift, and a premature stop codon. This isoform was expressed only by stretched TM cells. CONCLUSIONS. These alternative splicing events led to the modulation of potential GAG attachment sites and other ECM-binding motifs. These changes should affect TM cell-ECM and/or protein-protein interactions during the ECM remodeling that occurs coincident with homeostatic restoration of IOP to normal.",
author = "Kate Keller and Mary Kelley and Ted Acott",
year = "2007",
month = "3",
doi = "10.1167/iovs.06-0875",
language = "English (US)",
volume = "48",
pages = "1164--1172",
journal = "Investigative Ophthalmology and Visual Science",
issn = "0146-0404",
publisher = "Association for Research in Vision and Ophthalmology Inc.",
number = "3",

}

TY - JOUR

T1 - Extracellular matrix gene alternative splicing by trabecular meshwork cells in response to mechanical stretching

AU - Keller, Kate

AU - Kelley, Mary

AU - Acott, Ted

PY - 2007/3

Y1 - 2007/3

N2 - PURPOSE. Elevated intraocular pressure (IOP), sensed as mechanical stretching by trabecular meshwork (TM) cells, triggers extracellular matrix (ECM) remodeling. In addition to changes in gene expression, alternative mRNA splicing may alter ECM protein isoforms. Changes in mRNA expression and alternative splicing of four ECM molecules in response to mechanical stretching of TM cells were investigated. METHODS. Porcine TM cells were mechanically stretched for 12, 24, or 48 hours. RNA was isolated, and RT-PCR was performed with primers that flanked alternatively spliced domains. PCR products were identified by DNA sequencing. Quantitative RT-PCR (qRT-PCR) was performed with primers positioned within nonspliced and spliced regions of the genes. RESULTS. Total levels of tenascin C, collagen type XII, and CD44 mRNA were increased, whereas versican mRNA levels were decreased in response to the mechanical stretch. In addition, each of these genes expressed alternate mRNA isoforms. Transcripts containing the fibronectin type III domain D of tenascin C, the long NC3 isoform of collagen type XII, the V1 isoform of versican, and exons v7 and v8 of CD44 all increased in response to mechanical stretching. A novel isoform of collagen type XII was observed that resulted in deletion of two exons, a frameshift, and a premature stop codon. This isoform was expressed only by stretched TM cells. CONCLUSIONS. These alternative splicing events led to the modulation of potential GAG attachment sites and other ECM-binding motifs. These changes should affect TM cell-ECM and/or protein-protein interactions during the ECM remodeling that occurs coincident with homeostatic restoration of IOP to normal.

AB - PURPOSE. Elevated intraocular pressure (IOP), sensed as mechanical stretching by trabecular meshwork (TM) cells, triggers extracellular matrix (ECM) remodeling. In addition to changes in gene expression, alternative mRNA splicing may alter ECM protein isoforms. Changes in mRNA expression and alternative splicing of four ECM molecules in response to mechanical stretching of TM cells were investigated. METHODS. Porcine TM cells were mechanically stretched for 12, 24, or 48 hours. RNA was isolated, and RT-PCR was performed with primers that flanked alternatively spliced domains. PCR products were identified by DNA sequencing. Quantitative RT-PCR (qRT-PCR) was performed with primers positioned within nonspliced and spliced regions of the genes. RESULTS. Total levels of tenascin C, collagen type XII, and CD44 mRNA were increased, whereas versican mRNA levels were decreased in response to the mechanical stretch. In addition, each of these genes expressed alternate mRNA isoforms. Transcripts containing the fibronectin type III domain D of tenascin C, the long NC3 isoform of collagen type XII, the V1 isoform of versican, and exons v7 and v8 of CD44 all increased in response to mechanical stretching. A novel isoform of collagen type XII was observed that resulted in deletion of two exons, a frameshift, and a premature stop codon. This isoform was expressed only by stretched TM cells. CONCLUSIONS. These alternative splicing events led to the modulation of potential GAG attachment sites and other ECM-binding motifs. These changes should affect TM cell-ECM and/or protein-protein interactions during the ECM remodeling that occurs coincident with homeostatic restoration of IOP to normal.

UR - http://www.scopus.com/inward/record.url?scp=34047255072&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=34047255072&partnerID=8YFLogxK

U2 - 10.1167/iovs.06-0875

DO - 10.1167/iovs.06-0875

M3 - Article

C2 - 17325160

AN - SCOPUS:34047255072

VL - 48

SP - 1164

EP - 1172

JO - Investigative Ophthalmology and Visual Science

JF - Investigative Ophthalmology and Visual Science

SN - 0146-0404

IS - 3

ER -