Efficient, interactive, and three-dimensional segmentation of cell nuclei in thick tissue sections

Stephen J. Lockett, Damir Sudar, Curtis T. Thompson, Dan Pinkel, Joe W. Gray

Research output: Contribution to journalArticle

46 Scopus citations

Abstract

Segmentation of intact cell nuclei in three-dimensional (3D) images of thick tissue sections is an important basic capability necessary for many biological research studies. Because automatic algorithms do not correctly segment all nuclei in tissue sections, interactive algorithms may be preferable for some applications. Existing interactive segmentation algorithms require the analyst to draw a border around the nucleus under consideration in all successive two-dimensional (2D) planes of the 3D image. The present paper describes an algorithm with two main advantages over the existing method. First, the analyst draws borders only in 2D planes that cut approximately through the center of the nucleus under consideration so that the nuclear borders generally are most distinct. Second, the analyst draws only five borders around each nucleus, and then the algorithm interpolates the entire surface. The algorithm results in segmented objects that correspond to individual, visually identifiable nuclei. The segmented surfaces, however, may not exactly represent the true nuclear surface. An optional, automatic surface optimization algorithm can be applied to reduce this error.

Original languageEnglish (US)
Pages (from-to)275-286
Number of pages12
JournalCytometry
Volume31
Issue number4
DOIs
StatePublished - Apr 1 1998

Keywords

  • Confocal microscopy
  • Interactive segmentation
  • Tissue analysis

ASJC Scopus subject areas

  • Pathology and Forensic Medicine
  • Biophysics
  • Hematology
  • Endocrinology
  • Cell Biology

Fingerprint Dive into the research topics of 'Efficient, interactive, and three-dimensional segmentation of cell nuclei in thick tissue sections'. Together they form a unique fingerprint.

  • Cite this