Differential expression of alternative 5' untranslated regions in mRNAs encoding rat insulin-like growth factor I.

W. L. Lowe, Charles Roberts, S. R. Lasky, D. LeRoith

Research output: Contribution to journalArticle

297 Citations (Scopus)

Abstract

Rat insulin-like growth factor I (IGF-I) cDNAs contain three alternative 5' untranslated sequences (termed class A, B, and C), which are associated with an identical coding region for the mature IGF-I peptide. A solution hybridization/RNase protection assay was used to simultaneously quantitate the relative abundance of IGF-I transcripts with the different 5' untranslated regions. In all the tissues studied, transcripts with the class C 5' untranslated region were most abundant. In contrast, both class A and B transcripts were tissue specific. Class A transcripts were present in moderate abundance in liver; in low abundance in kidney, lung, testes, and stomach; and were undetectable in muscle, heart, and brain; whereas class B transcripts were detected only in liver. These three classes of 5' untranslated region were also regulated independently by growth hormone. In liver, heart, kidney, and lung, growth hormone increased the abundance of class C transcripts 2- to 3-fold. In liver, growth hormone increased the abundance of the class A and B transcripts 6- to 7-fold. In lung and kidney, on the other hand, the abundance of class A transcripts was not affected by growth hormone. Thus, rat IGF-I gene transcripts contain one of three alternative 5' untranslated regions, which are expressed in a tissue-specific manner and are differentially regulated by growth hormone. Finally, cDNA probes unique to two of the three 5' untranslated regions hybridized to all three major species of IGF-I mRNA typically seen on RNA blots with a coding region probe.

Original languageEnglish (US)
Pages (from-to)8946-8950
Number of pages5
JournalProceedings of the National Academy of Sciences of the United States of America
Volume84
Issue number24
StatePublished - Dec 1987
Externally publishedYes

Fingerprint

5' Untranslated Regions
Insulin-Like Growth Factor I
Growth Hormone
Messenger RNA
Liver
Kidney
Lung
Complementary DNA
Ribonucleases
Testis
Stomach
Myocardium
RNA
Peptides
Brain
Genes

ASJC Scopus subject areas

  • General
  • Genetics

Cite this

@article{52c835318d9a43188defba490da7fa4a,
title = "Differential expression of alternative 5' untranslated regions in mRNAs encoding rat insulin-like growth factor I.",
abstract = "Rat insulin-like growth factor I (IGF-I) cDNAs contain three alternative 5' untranslated sequences (termed class A, B, and C), which are associated with an identical coding region for the mature IGF-I peptide. A solution hybridization/RNase protection assay was used to simultaneously quantitate the relative abundance of IGF-I transcripts with the different 5' untranslated regions. In all the tissues studied, transcripts with the class C 5' untranslated region were most abundant. In contrast, both class A and B transcripts were tissue specific. Class A transcripts were present in moderate abundance in liver; in low abundance in kidney, lung, testes, and stomach; and were undetectable in muscle, heart, and brain; whereas class B transcripts were detected only in liver. These three classes of 5' untranslated region were also regulated independently by growth hormone. In liver, heart, kidney, and lung, growth hormone increased the abundance of class C transcripts 2- to 3-fold. In liver, growth hormone increased the abundance of the class A and B transcripts 6- to 7-fold. In lung and kidney, on the other hand, the abundance of class A transcripts was not affected by growth hormone. Thus, rat IGF-I gene transcripts contain one of three alternative 5' untranslated regions, which are expressed in a tissue-specific manner and are differentially regulated by growth hormone. Finally, cDNA probes unique to two of the three 5' untranslated regions hybridized to all three major species of IGF-I mRNA typically seen on RNA blots with a coding region probe.",
author = "Lowe, {W. L.} and Charles Roberts and Lasky, {S. R.} and D. LeRoith",
year = "1987",
month = "12",
language = "English (US)",
volume = "84",
pages = "8946--8950",
journal = "Proceedings of the National Academy of Sciences of the United States of America",
issn = "0027-8424",
number = "24",

}

TY - JOUR

T1 - Differential expression of alternative 5' untranslated regions in mRNAs encoding rat insulin-like growth factor I.

AU - Lowe, W. L.

AU - Roberts, Charles

AU - Lasky, S. R.

AU - LeRoith, D.

PY - 1987/12

Y1 - 1987/12

N2 - Rat insulin-like growth factor I (IGF-I) cDNAs contain three alternative 5' untranslated sequences (termed class A, B, and C), which are associated with an identical coding region for the mature IGF-I peptide. A solution hybridization/RNase protection assay was used to simultaneously quantitate the relative abundance of IGF-I transcripts with the different 5' untranslated regions. In all the tissues studied, transcripts with the class C 5' untranslated region were most abundant. In contrast, both class A and B transcripts were tissue specific. Class A transcripts were present in moderate abundance in liver; in low abundance in kidney, lung, testes, and stomach; and were undetectable in muscle, heart, and brain; whereas class B transcripts were detected only in liver. These three classes of 5' untranslated region were also regulated independently by growth hormone. In liver, heart, kidney, and lung, growth hormone increased the abundance of class C transcripts 2- to 3-fold. In liver, growth hormone increased the abundance of the class A and B transcripts 6- to 7-fold. In lung and kidney, on the other hand, the abundance of class A transcripts was not affected by growth hormone. Thus, rat IGF-I gene transcripts contain one of three alternative 5' untranslated regions, which are expressed in a tissue-specific manner and are differentially regulated by growth hormone. Finally, cDNA probes unique to two of the three 5' untranslated regions hybridized to all three major species of IGF-I mRNA typically seen on RNA blots with a coding region probe.

AB - Rat insulin-like growth factor I (IGF-I) cDNAs contain three alternative 5' untranslated sequences (termed class A, B, and C), which are associated with an identical coding region for the mature IGF-I peptide. A solution hybridization/RNase protection assay was used to simultaneously quantitate the relative abundance of IGF-I transcripts with the different 5' untranslated regions. In all the tissues studied, transcripts with the class C 5' untranslated region were most abundant. In contrast, both class A and B transcripts were tissue specific. Class A transcripts were present in moderate abundance in liver; in low abundance in kidney, lung, testes, and stomach; and were undetectable in muscle, heart, and brain; whereas class B transcripts were detected only in liver. These three classes of 5' untranslated region were also regulated independently by growth hormone. In liver, heart, kidney, and lung, growth hormone increased the abundance of class C transcripts 2- to 3-fold. In liver, growth hormone increased the abundance of the class A and B transcripts 6- to 7-fold. In lung and kidney, on the other hand, the abundance of class A transcripts was not affected by growth hormone. Thus, rat IGF-I gene transcripts contain one of three alternative 5' untranslated regions, which are expressed in a tissue-specific manner and are differentially regulated by growth hormone. Finally, cDNA probes unique to two of the three 5' untranslated regions hybridized to all three major species of IGF-I mRNA typically seen on RNA blots with a coding region probe.

UR - http://www.scopus.com/inward/record.url?scp=0023462633&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=0023462633&partnerID=8YFLogxK

M3 - Article

VL - 84

SP - 8946

EP - 8950

JO - Proceedings of the National Academy of Sciences of the United States of America

JF - Proceedings of the National Academy of Sciences of the United States of America

SN - 0027-8424

IS - 24

ER -