Cytosolic and nuclear distribution of PPAR-γ2 in differentiating 3T3- L1 preadipocytes

Philippe Thuillier, Rebecca Baillie, Xiaoming Sha, Steven D. Clarke

Research output: Contribution to journalArticle

43 Citations (Scopus)

Abstract

In light of the pivotal role that PPARγ2 plays in the expression of fat specific genes (e.g., A-FABP), we have examined the hypothesis that a rise in PPARγ2 protein is required for the expression of A-FABP, and that the acceleration of fat cell differentiation by the thiazolidinedione agent, pioglitazone (PIOG), reflects an increase in the abundance of PPARγ2 mRNA and protein. Western analyses surprisingly revealed that undifferentiated 3T3-L1 fibroblasts contained significant levels of PPARγ2 protein; that the amount of total cellular PPARγ2 only increased 2-fold during differentiation; and that the levels of PPARγ2 protein and mRNA were not increased by PIOG even though fat cell differentiation was accelerated by PIOG as revealed by a 20-fold increase in A-FABP expression. Cell fractionation studies revealed that PPARγ2 was evenly distributed between the cytosolic and nuclear compartments in both undifferentiated and differentiating 3T3-L1 cells. Immunocytochemical studies with a PPARγ2- specific antibody indicated that PPARγ2 was diffusely distributed throughout the cytosol of undifferentiated 3T3-L1 cells, but as the differentiation progressed, the PPARγ2 became focused around the developing lipid droplets. In contrast to PPARγ2, undifferentiated 3T3-L1 cells contained no measurable quantities of RXRα, but once fat cell differentiation was initiated by treatment with IBMX and dexamethasone, the cellular content of RXRα increased several fold. The rise in RXRα content paralleled the induction of A-FABP, but the expression of RXRα was not enhanced by PIOG. Although the amount of PPARγ2 and RXRα was unaffected by PIOG, gel shift assays revealed that PIOG stimulated PPARγ2/RXRα binding to the adipose response element of A-FABP by 5-fold in less than 12 h. Apparently, RXRα rather than PPARγ2 is the pivotal trans-factor essential for the initiation of terminal fat cell differentiation. However, the high cytosolic content of PPARγ2 and its association with the lipid droplet of differentiating 3T3-L1 cells suggests PPARγ2 may possess a cytosolic function in the developing fat cell.

Original languageEnglish (US)
Pages (from-to)2329-2338
Number of pages10
JournalJournal of Lipid Research
Volume39
Issue number12
StatePublished - 1998
Externally publishedYes

Fingerprint

pioglitazone
Peroxisome Proliferator-Activated Receptors
3T3-L1 Cells
Adipocytes
Fats
Cell Differentiation
Proteins
Cell Fractionation
Lipids
1-Methyl-3-isobutylxanthine
Peptide Initiation Factors
Messenger RNA
Response Elements
Fibroblasts
Fractionation
Cytosol
Dexamethasone
Assays
Genes
Gels

Keywords

  • Fatty acid binding protein
  • Gene expression
  • Insulin
  • Pioglitazone
  • PPARγ2
  • RXRα

ASJC Scopus subject areas

  • Endocrinology

Cite this

Cytosolic and nuclear distribution of PPAR-γ2 in differentiating 3T3- L1 preadipocytes. / Thuillier, Philippe; Baillie, Rebecca; Sha, Xiaoming; Clarke, Steven D.

In: Journal of Lipid Research, Vol. 39, No. 12, 1998, p. 2329-2338.

Research output: Contribution to journalArticle

Thuillier, Philippe ; Baillie, Rebecca ; Sha, Xiaoming ; Clarke, Steven D. / Cytosolic and nuclear distribution of PPAR-γ2 in differentiating 3T3- L1 preadipocytes. In: Journal of Lipid Research. 1998 ; Vol. 39, No. 12. pp. 2329-2338.
@article{dae1d2d88fb441b3a54be1c5f8ac4b4d,
title = "Cytosolic and nuclear distribution of PPAR-γ2 in differentiating 3T3- L1 preadipocytes",
abstract = "In light of the pivotal role that PPARγ2 plays in the expression of fat specific genes (e.g., A-FABP), we have examined the hypothesis that a rise in PPARγ2 protein is required for the expression of A-FABP, and that the acceleration of fat cell differentiation by the thiazolidinedione agent, pioglitazone (PIOG), reflects an increase in the abundance of PPARγ2 mRNA and protein. Western analyses surprisingly revealed that undifferentiated 3T3-L1 fibroblasts contained significant levels of PPARγ2 protein; that the amount of total cellular PPARγ2 only increased 2-fold during differentiation; and that the levels of PPARγ2 protein and mRNA were not increased by PIOG even though fat cell differentiation was accelerated by PIOG as revealed by a 20-fold increase in A-FABP expression. Cell fractionation studies revealed that PPARγ2 was evenly distributed between the cytosolic and nuclear compartments in both undifferentiated and differentiating 3T3-L1 cells. Immunocytochemical studies with a PPARγ2- specific antibody indicated that PPARγ2 was diffusely distributed throughout the cytosol of undifferentiated 3T3-L1 cells, but as the differentiation progressed, the PPARγ2 became focused around the developing lipid droplets. In contrast to PPARγ2, undifferentiated 3T3-L1 cells contained no measurable quantities of RXRα, but once fat cell differentiation was initiated by treatment with IBMX and dexamethasone, the cellular content of RXRα increased several fold. The rise in RXRα content paralleled the induction of A-FABP, but the expression of RXRα was not enhanced by PIOG. Although the amount of PPARγ2 and RXRα was unaffected by PIOG, gel shift assays revealed that PIOG stimulated PPARγ2/RXRα binding to the adipose response element of A-FABP by 5-fold in less than 12 h. Apparently, RXRα rather than PPARγ2 is the pivotal trans-factor essential for the initiation of terminal fat cell differentiation. However, the high cytosolic content of PPARγ2 and its association with the lipid droplet of differentiating 3T3-L1 cells suggests PPARγ2 may possess a cytosolic function in the developing fat cell.",
keywords = "Fatty acid binding protein, Gene expression, Insulin, Pioglitazone, PPARγ2, RXRα",
author = "Philippe Thuillier and Rebecca Baillie and Xiaoming Sha and Clarke, {Steven D.}",
year = "1998",
language = "English (US)",
volume = "39",
pages = "2329--2338",
journal = "Journal of Lipid Research",
issn = "0022-2275",
publisher = "American Society for Biochemistry and Molecular Biology Inc.",
number = "12",

}

TY - JOUR

T1 - Cytosolic and nuclear distribution of PPAR-γ2 in differentiating 3T3- L1 preadipocytes

AU - Thuillier, Philippe

AU - Baillie, Rebecca

AU - Sha, Xiaoming

AU - Clarke, Steven D.

PY - 1998

Y1 - 1998

N2 - In light of the pivotal role that PPARγ2 plays in the expression of fat specific genes (e.g., A-FABP), we have examined the hypothesis that a rise in PPARγ2 protein is required for the expression of A-FABP, and that the acceleration of fat cell differentiation by the thiazolidinedione agent, pioglitazone (PIOG), reflects an increase in the abundance of PPARγ2 mRNA and protein. Western analyses surprisingly revealed that undifferentiated 3T3-L1 fibroblasts contained significant levels of PPARγ2 protein; that the amount of total cellular PPARγ2 only increased 2-fold during differentiation; and that the levels of PPARγ2 protein and mRNA were not increased by PIOG even though fat cell differentiation was accelerated by PIOG as revealed by a 20-fold increase in A-FABP expression. Cell fractionation studies revealed that PPARγ2 was evenly distributed between the cytosolic and nuclear compartments in both undifferentiated and differentiating 3T3-L1 cells. Immunocytochemical studies with a PPARγ2- specific antibody indicated that PPARγ2 was diffusely distributed throughout the cytosol of undifferentiated 3T3-L1 cells, but as the differentiation progressed, the PPARγ2 became focused around the developing lipid droplets. In contrast to PPARγ2, undifferentiated 3T3-L1 cells contained no measurable quantities of RXRα, but once fat cell differentiation was initiated by treatment with IBMX and dexamethasone, the cellular content of RXRα increased several fold. The rise in RXRα content paralleled the induction of A-FABP, but the expression of RXRα was not enhanced by PIOG. Although the amount of PPARγ2 and RXRα was unaffected by PIOG, gel shift assays revealed that PIOG stimulated PPARγ2/RXRα binding to the adipose response element of A-FABP by 5-fold in less than 12 h. Apparently, RXRα rather than PPARγ2 is the pivotal trans-factor essential for the initiation of terminal fat cell differentiation. However, the high cytosolic content of PPARγ2 and its association with the lipid droplet of differentiating 3T3-L1 cells suggests PPARγ2 may possess a cytosolic function in the developing fat cell.

AB - In light of the pivotal role that PPARγ2 plays in the expression of fat specific genes (e.g., A-FABP), we have examined the hypothesis that a rise in PPARγ2 protein is required for the expression of A-FABP, and that the acceleration of fat cell differentiation by the thiazolidinedione agent, pioglitazone (PIOG), reflects an increase in the abundance of PPARγ2 mRNA and protein. Western analyses surprisingly revealed that undifferentiated 3T3-L1 fibroblasts contained significant levels of PPARγ2 protein; that the amount of total cellular PPARγ2 only increased 2-fold during differentiation; and that the levels of PPARγ2 protein and mRNA were not increased by PIOG even though fat cell differentiation was accelerated by PIOG as revealed by a 20-fold increase in A-FABP expression. Cell fractionation studies revealed that PPARγ2 was evenly distributed between the cytosolic and nuclear compartments in both undifferentiated and differentiating 3T3-L1 cells. Immunocytochemical studies with a PPARγ2- specific antibody indicated that PPARγ2 was diffusely distributed throughout the cytosol of undifferentiated 3T3-L1 cells, but as the differentiation progressed, the PPARγ2 became focused around the developing lipid droplets. In contrast to PPARγ2, undifferentiated 3T3-L1 cells contained no measurable quantities of RXRα, but once fat cell differentiation was initiated by treatment with IBMX and dexamethasone, the cellular content of RXRα increased several fold. The rise in RXRα content paralleled the induction of A-FABP, but the expression of RXRα was not enhanced by PIOG. Although the amount of PPARγ2 and RXRα was unaffected by PIOG, gel shift assays revealed that PIOG stimulated PPARγ2/RXRα binding to the adipose response element of A-FABP by 5-fold in less than 12 h. Apparently, RXRα rather than PPARγ2 is the pivotal trans-factor essential for the initiation of terminal fat cell differentiation. However, the high cytosolic content of PPARγ2 and its association with the lipid droplet of differentiating 3T3-L1 cells suggests PPARγ2 may possess a cytosolic function in the developing fat cell.

KW - Fatty acid binding protein

KW - Gene expression

KW - Insulin

KW - Pioglitazone

KW - PPARγ2

KW - RXRα

UR - http://www.scopus.com/inward/record.url?scp=0032433287&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=0032433287&partnerID=8YFLogxK

M3 - Article

C2 - 9831621

AN - SCOPUS:0032433287

VL - 39

SP - 2329

EP - 2338

JO - Journal of Lipid Research

JF - Journal of Lipid Research

SN - 0022-2275

IS - 12

ER -