Cyclic Multiplexed-Immunofluorescence (cmIF), a Highly Multiplexed Method for Single-Cell Analysis

Research output: Contribution to journalArticle

Abstract

Immunotherapy harnesses the power of the adaptive immune system and has revolutionized the field of oncotherapy, as novel therapeutic strategies have been introduced into clinical use. The development of immune checkpoint inhibitors has led to durable control of disease in a subset of advanced cancer patients, such as those with melanoma and non-small cell lung cancer. However, predicting patient responses to therapy remains a major challenge, due to the remarkable genomic, epigenetic, and microenvironmental heterogeneity present in each tumor. Breast cancer (BC) is the most common cancer in women, where hormone receptor-positive (HR+; estrogen receptor and/or progesterone receptor) BC comprises the majority (>50%) and has better prognosis, while a minority (<20%) are triple negative BC (TNBC), which has an aggressive phenotype. There is a clinical need to identify predictors of late recurrence in HR+ BC and predictors of immunotherapy outcomes in advanced TNBC. Tumor-infiltrating lymphocytes (TILs) have recently been shown to predict late recurrence in HR+, counter to the findings that TILs confer good prognosis in TNBC and human epidermal growth factor receptor 2 positive (HER2+) subtypes. Furthermore, the spatial arrangement of TILs also appears to have prognostic value, with dense clusters of immune cells predicting poor prognosis in HR+ and good prognosis in TNBC. Whether TIL clusters in different breast cancer subtypes represent the same or different landscapes of TILs is unknown and may have treatment implications for a significant portion of breast cancer patients. Current histopathological staining technology is not sufficient for characterizing the ensembles of TILs and their spatial patterns, in addition to tumor and microenvironmental heterogeneity. However, recent advances in cyclic immunofluorescence enable differentiation of the subsets based on TILs, tumor heterogeneity, and microenvironment composition between good and poor responders. A computational framework for understanding the importance of the spatial relationships between TILs and tumor cells in cancer tissues, which will allow for quantitative interpretation of cyclic immunostaining, is also under development. This chapter will explore the workflow for a newly developed cyclic multiplexed-immunofluorescence (cmIF) assay, which has been optimized for formalin-fixed. paraffin-embedded tissues and developed to process digital images for quantitative single-cell based spatial analysis of tumor heterogeneity and microenvironment, including immune cell composition.

Original languageEnglish (US)
Pages (from-to)521-562
Number of pages42
JournalMethods in molecular biology (Clifton, N.J.)
Volume2055
DOIs
StatePublished - Jan 1 2020

Fingerprint

Single-Cell Analysis
Tumor-Infiltrating Lymphocytes
Fluorescent Antibody Technique
Breast Neoplasms
Neoplasms
Tumor Microenvironment
Immunotherapy
Triple Negative Breast Neoplasms
Recurrence
Spatial Analysis
Workflow
Progesterone Receptors
Epigenomics
Non-Small Cell Lung Carcinoma
Estrogen Receptors
Paraffin
Formaldehyde
Immune System
Melanoma
Therapeutics

Keywords

  • Breast cancer
  • Cyclic IF
  • Cyclic immunofluorescence
  • Cyclic multiplexed-immunofluorescence (cmIF)
  • Immunotherapy
  • Tumor infiltrating lymphocytes (TILs)

ASJC Scopus subject areas

  • Molecular Biology
  • Genetics

Cite this

@article{601706e97c044a4a82ad18f03d5eec27,
title = "Cyclic Multiplexed-Immunofluorescence (cmIF), a Highly Multiplexed Method for Single-Cell Analysis",
abstract = "Immunotherapy harnesses the power of the adaptive immune system and has revolutionized the field of oncotherapy, as novel therapeutic strategies have been introduced into clinical use. The development of immune checkpoint inhibitors has led to durable control of disease in a subset of advanced cancer patients, such as those with melanoma and non-small cell lung cancer. However, predicting patient responses to therapy remains a major challenge, due to the remarkable genomic, epigenetic, and microenvironmental heterogeneity present in each tumor. Breast cancer (BC) is the most common cancer in women, where hormone receptor-positive (HR+; estrogen receptor and/or progesterone receptor) BC comprises the majority (>50{\%}) and has better prognosis, while a minority (<20{\%}) are triple negative BC (TNBC), which has an aggressive phenotype. There is a clinical need to identify predictors of late recurrence in HR+ BC and predictors of immunotherapy outcomes in advanced TNBC. Tumor-infiltrating lymphocytes (TILs) have recently been shown to predict late recurrence in HR+, counter to the findings that TILs confer good prognosis in TNBC and human epidermal growth factor receptor 2 positive (HER2+) subtypes. Furthermore, the spatial arrangement of TILs also appears to have prognostic value, with dense clusters of immune cells predicting poor prognosis in HR+ and good prognosis in TNBC. Whether TIL clusters in different breast cancer subtypes represent the same or different landscapes of TILs is unknown and may have treatment implications for a significant portion of breast cancer patients. Current histopathological staining technology is not sufficient for characterizing the ensembles of TILs and their spatial patterns, in addition to tumor and microenvironmental heterogeneity. However, recent advances in cyclic immunofluorescence enable differentiation of the subsets based on TILs, tumor heterogeneity, and microenvironment composition between good and poor responders. A computational framework for understanding the importance of the spatial relationships between TILs and tumor cells in cancer tissues, which will allow for quantitative interpretation of cyclic immunostaining, is also under development. This chapter will explore the workflow for a newly developed cyclic multiplexed-immunofluorescence (cmIF) assay, which has been optimized for formalin-fixed. paraffin-embedded tissues and developed to process digital images for quantitative single-cell based spatial analysis of tumor heterogeneity and microenvironment, including immune cell composition.",
keywords = "Breast cancer, Cyclic IF, Cyclic immunofluorescence, Cyclic multiplexed-immunofluorescence (cmIF), Immunotherapy, Tumor infiltrating lymphocytes (TILs)",
author = "Jennifer Eng and Guillaume Thibault and Shiuh-Wen Luoh and Joe Gray and Chang, {Young Hwan} and Kwang-Yung Chin",
year = "2020",
month = "1",
day = "1",
doi = "10.1007/978-1-4939-9773-2_24",
language = "English (US)",
volume = "2055",
pages = "521--562",
journal = "Methods in molecular biology (Clifton, N.J.)",
issn = "1064-3745",
publisher = "Humana Press",

}

TY - JOUR

T1 - Cyclic Multiplexed-Immunofluorescence (cmIF), a Highly Multiplexed Method for Single-Cell Analysis

AU - Eng, Jennifer

AU - Thibault, Guillaume

AU - Luoh, Shiuh-Wen

AU - Gray, Joe

AU - Chang, Young Hwan

AU - Chin, Kwang-Yung

PY - 2020/1/1

Y1 - 2020/1/1

N2 - Immunotherapy harnesses the power of the adaptive immune system and has revolutionized the field of oncotherapy, as novel therapeutic strategies have been introduced into clinical use. The development of immune checkpoint inhibitors has led to durable control of disease in a subset of advanced cancer patients, such as those with melanoma and non-small cell lung cancer. However, predicting patient responses to therapy remains a major challenge, due to the remarkable genomic, epigenetic, and microenvironmental heterogeneity present in each tumor. Breast cancer (BC) is the most common cancer in women, where hormone receptor-positive (HR+; estrogen receptor and/or progesterone receptor) BC comprises the majority (>50%) and has better prognosis, while a minority (<20%) are triple negative BC (TNBC), which has an aggressive phenotype. There is a clinical need to identify predictors of late recurrence in HR+ BC and predictors of immunotherapy outcomes in advanced TNBC. Tumor-infiltrating lymphocytes (TILs) have recently been shown to predict late recurrence in HR+, counter to the findings that TILs confer good prognosis in TNBC and human epidermal growth factor receptor 2 positive (HER2+) subtypes. Furthermore, the spatial arrangement of TILs also appears to have prognostic value, with dense clusters of immune cells predicting poor prognosis in HR+ and good prognosis in TNBC. Whether TIL clusters in different breast cancer subtypes represent the same or different landscapes of TILs is unknown and may have treatment implications for a significant portion of breast cancer patients. Current histopathological staining technology is not sufficient for characterizing the ensembles of TILs and their spatial patterns, in addition to tumor and microenvironmental heterogeneity. However, recent advances in cyclic immunofluorescence enable differentiation of the subsets based on TILs, tumor heterogeneity, and microenvironment composition between good and poor responders. A computational framework for understanding the importance of the spatial relationships between TILs and tumor cells in cancer tissues, which will allow for quantitative interpretation of cyclic immunostaining, is also under development. This chapter will explore the workflow for a newly developed cyclic multiplexed-immunofluorescence (cmIF) assay, which has been optimized for formalin-fixed. paraffin-embedded tissues and developed to process digital images for quantitative single-cell based spatial analysis of tumor heterogeneity and microenvironment, including immune cell composition.

AB - Immunotherapy harnesses the power of the adaptive immune system and has revolutionized the field of oncotherapy, as novel therapeutic strategies have been introduced into clinical use. The development of immune checkpoint inhibitors has led to durable control of disease in a subset of advanced cancer patients, such as those with melanoma and non-small cell lung cancer. However, predicting patient responses to therapy remains a major challenge, due to the remarkable genomic, epigenetic, and microenvironmental heterogeneity present in each tumor. Breast cancer (BC) is the most common cancer in women, where hormone receptor-positive (HR+; estrogen receptor and/or progesterone receptor) BC comprises the majority (>50%) and has better prognosis, while a minority (<20%) are triple negative BC (TNBC), which has an aggressive phenotype. There is a clinical need to identify predictors of late recurrence in HR+ BC and predictors of immunotherapy outcomes in advanced TNBC. Tumor-infiltrating lymphocytes (TILs) have recently been shown to predict late recurrence in HR+, counter to the findings that TILs confer good prognosis in TNBC and human epidermal growth factor receptor 2 positive (HER2+) subtypes. Furthermore, the spatial arrangement of TILs also appears to have prognostic value, with dense clusters of immune cells predicting poor prognosis in HR+ and good prognosis in TNBC. Whether TIL clusters in different breast cancer subtypes represent the same or different landscapes of TILs is unknown and may have treatment implications for a significant portion of breast cancer patients. Current histopathological staining technology is not sufficient for characterizing the ensembles of TILs and their spatial patterns, in addition to tumor and microenvironmental heterogeneity. However, recent advances in cyclic immunofluorescence enable differentiation of the subsets based on TILs, tumor heterogeneity, and microenvironment composition between good and poor responders. A computational framework for understanding the importance of the spatial relationships between TILs and tumor cells in cancer tissues, which will allow for quantitative interpretation of cyclic immunostaining, is also under development. This chapter will explore the workflow for a newly developed cyclic multiplexed-immunofluorescence (cmIF) assay, which has been optimized for formalin-fixed. paraffin-embedded tissues and developed to process digital images for quantitative single-cell based spatial analysis of tumor heterogeneity and microenvironment, including immune cell composition.

KW - Breast cancer

KW - Cyclic IF

KW - Cyclic immunofluorescence

KW - Cyclic multiplexed-immunofluorescence (cmIF)

KW - Immunotherapy

KW - Tumor infiltrating lymphocytes (TILs)

UR - http://www.scopus.com/inward/record.url?scp=85071978059&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=85071978059&partnerID=8YFLogxK

U2 - 10.1007/978-1-4939-9773-2_24

DO - 10.1007/978-1-4939-9773-2_24

M3 - Article

C2 - 31502168

AN - SCOPUS:85071978059

VL - 2055

SP - 521

EP - 562

JO - Methods in molecular biology (Clifton, N.J.)

JF - Methods in molecular biology (Clifton, N.J.)

SN - 1064-3745

ER -