COX-2 modulates mammary tumor progression in response to collagen density

Karla Esbona, David Inman, Sandeep Saha, Justin Jeffery, Pepper Schedin, Lee Wilke, Patricia Keely

Research output: Contribution to journalArticle

34 Citations (Scopus)

Abstract

Background: High breast density is linked to an increased risk of breast cancer, and correlates with changes in collagen. In a mouse model of mammary carcinoma in the context of increased collagen deposition, the MMTV-PyMT/Col1a1 tm1jae , there is accelerated mammary tumor formation and progression. Previous gene expression analysis suggests that increased collagen density elevates expression of PTGS2 (prostaglandin-endoperoxide synthase 2), the gene for cyclooxygenase-2 (COX-2). Methods: To understand the role of COX-2 in tumor progression within a collagen-dense microenvironment, we treated MMTV-PyMT or MMTV-PyMT/Col1a1 tm1jae tumors prior to and after tumor formation. Animals received treatment with celecoxib, a specific COX-2 inhibitor, or placebo. Mammary tumors were examined for COX-2, inflammatory and stromal cell components, and collagen deposition through immunohistochemical analysis, immunofluorescence, multiplex cytokine ELISA and tissue imaging techniques. Results: PyMT/Col1a1 tm1jae tumors were larger, more proliferative, and expressed higher levels of COX-2 and PGE2 than PyMT tumors in wild type (WT) mice. Treatment with celecoxib significantly decreased the induced tumor size and metastasis of the PyMT/Col1a1 tumors, such that their size was not different from the smaller PyMT tumors. Celecoxib had minimal effect on the PyMT tumors. Celecoxib decreased expression levels of COX-2, PGE2, and Ki-67. Several cytokines were over-expressed in PyMT/Col1a1 compared to PyMT, and celecoxib treatment prevented their over-expression. Furthermore, macrophage and neutrophil recruitment were enhanced in PyMT/Col1a1 tumors, and this effect was inhibited by celecoxib. Notably, COX-2 inhibition reduced overall collagen deposition. Finally, when celecoxib was used prior to tumor formation, PyMT/Col1a1 tumors were fewer and smaller than in untreated animals. Conclusion: These findings suggest that COX-2 has a direct role in modulating tumor progression in tumors arising within collagen-dense microenvironments, and suggest that COX-2 may be an effective therapeutic target for women with dense breast tissue and early-stage breast cancer.

Original languageEnglish (US)
Article number35
JournalBreast Cancer Research
Volume18
Issue number1
DOIs
StatePublished - Mar 22 2016

Fingerprint

Celecoxib
Cyclooxygenase 2
Collagen
Breast Neoplasms
Neoplasms
Dinoprostone
Cytokines
Neutrophil Infiltration
Cyclooxygenase 2 Inhibitors
Cellular Structures
Therapeutics
Prostaglandin-Endoperoxide Synthases
Stromal Cells
Fluorescent Antibody Technique
Breast

ASJC Scopus subject areas

  • Cancer Research
  • Oncology

Cite this

COX-2 modulates mammary tumor progression in response to collagen density. / Esbona, Karla; Inman, David; Saha, Sandeep; Jeffery, Justin; Schedin, Pepper; Wilke, Lee; Keely, Patricia.

In: Breast Cancer Research, Vol. 18, No. 1, 35, 22.03.2016.

Research output: Contribution to journalArticle

Esbona, Karla ; Inman, David ; Saha, Sandeep ; Jeffery, Justin ; Schedin, Pepper ; Wilke, Lee ; Keely, Patricia. / COX-2 modulates mammary tumor progression in response to collagen density. In: Breast Cancer Research. 2016 ; Vol. 18, No. 1.
@article{8d296d1617744a3cb659516eb72b3657,
title = "COX-2 modulates mammary tumor progression in response to collagen density",
abstract = "Background: High breast density is linked to an increased risk of breast cancer, and correlates with changes in collagen. In a mouse model of mammary carcinoma in the context of increased collagen deposition, the MMTV-PyMT/Col1a1 tm1jae , there is accelerated mammary tumor formation and progression. Previous gene expression analysis suggests that increased collagen density elevates expression of PTGS2 (prostaglandin-endoperoxide synthase 2), the gene for cyclooxygenase-2 (COX-2). Methods: To understand the role of COX-2 in tumor progression within a collagen-dense microenvironment, we treated MMTV-PyMT or MMTV-PyMT/Col1a1 tm1jae tumors prior to and after tumor formation. Animals received treatment with celecoxib, a specific COX-2 inhibitor, or placebo. Mammary tumors were examined for COX-2, inflammatory and stromal cell components, and collagen deposition through immunohistochemical analysis, immunofluorescence, multiplex cytokine ELISA and tissue imaging techniques. Results: PyMT/Col1a1 tm1jae tumors were larger, more proliferative, and expressed higher levels of COX-2 and PGE2 than PyMT tumors in wild type (WT) mice. Treatment with celecoxib significantly decreased the induced tumor size and metastasis of the PyMT/Col1a1 tumors, such that their size was not different from the smaller PyMT tumors. Celecoxib had minimal effect on the PyMT tumors. Celecoxib decreased expression levels of COX-2, PGE2, and Ki-67. Several cytokines were over-expressed in PyMT/Col1a1 compared to PyMT, and celecoxib treatment prevented their over-expression. Furthermore, macrophage and neutrophil recruitment were enhanced in PyMT/Col1a1 tumors, and this effect was inhibited by celecoxib. Notably, COX-2 inhibition reduced overall collagen deposition. Finally, when celecoxib was used prior to tumor formation, PyMT/Col1a1 tumors were fewer and smaller than in untreated animals. Conclusion: These findings suggest that COX-2 has a direct role in modulating tumor progression in tumors arising within collagen-dense microenvironments, and suggest that COX-2 may be an effective therapeutic target for women with dense breast tissue and early-stage breast cancer.",
author = "Karla Esbona and David Inman and Sandeep Saha and Justin Jeffery and Pepper Schedin and Lee Wilke and Patricia Keely",
year = "2016",
month = "3",
day = "22",
doi = "10.1186/s13058-016-0695-3",
language = "English (US)",
volume = "18",
journal = "Breast Cancer Research",
issn = "1465-5411",
publisher = "BioMed Central",
number = "1",

}

TY - JOUR

T1 - COX-2 modulates mammary tumor progression in response to collagen density

AU - Esbona, Karla

AU - Inman, David

AU - Saha, Sandeep

AU - Jeffery, Justin

AU - Schedin, Pepper

AU - Wilke, Lee

AU - Keely, Patricia

PY - 2016/3/22

Y1 - 2016/3/22

N2 - Background: High breast density is linked to an increased risk of breast cancer, and correlates with changes in collagen. In a mouse model of mammary carcinoma in the context of increased collagen deposition, the MMTV-PyMT/Col1a1 tm1jae , there is accelerated mammary tumor formation and progression. Previous gene expression analysis suggests that increased collagen density elevates expression of PTGS2 (prostaglandin-endoperoxide synthase 2), the gene for cyclooxygenase-2 (COX-2). Methods: To understand the role of COX-2 in tumor progression within a collagen-dense microenvironment, we treated MMTV-PyMT or MMTV-PyMT/Col1a1 tm1jae tumors prior to and after tumor formation. Animals received treatment with celecoxib, a specific COX-2 inhibitor, or placebo. Mammary tumors were examined for COX-2, inflammatory and stromal cell components, and collagen deposition through immunohistochemical analysis, immunofluorescence, multiplex cytokine ELISA and tissue imaging techniques. Results: PyMT/Col1a1 tm1jae tumors were larger, more proliferative, and expressed higher levels of COX-2 and PGE2 than PyMT tumors in wild type (WT) mice. Treatment with celecoxib significantly decreased the induced tumor size and metastasis of the PyMT/Col1a1 tumors, such that their size was not different from the smaller PyMT tumors. Celecoxib had minimal effect on the PyMT tumors. Celecoxib decreased expression levels of COX-2, PGE2, and Ki-67. Several cytokines were over-expressed in PyMT/Col1a1 compared to PyMT, and celecoxib treatment prevented their over-expression. Furthermore, macrophage and neutrophil recruitment were enhanced in PyMT/Col1a1 tumors, and this effect was inhibited by celecoxib. Notably, COX-2 inhibition reduced overall collagen deposition. Finally, when celecoxib was used prior to tumor formation, PyMT/Col1a1 tumors were fewer and smaller than in untreated animals. Conclusion: These findings suggest that COX-2 has a direct role in modulating tumor progression in tumors arising within collagen-dense microenvironments, and suggest that COX-2 may be an effective therapeutic target for women with dense breast tissue and early-stage breast cancer.

AB - Background: High breast density is linked to an increased risk of breast cancer, and correlates with changes in collagen. In a mouse model of mammary carcinoma in the context of increased collagen deposition, the MMTV-PyMT/Col1a1 tm1jae , there is accelerated mammary tumor formation and progression. Previous gene expression analysis suggests that increased collagen density elevates expression of PTGS2 (prostaglandin-endoperoxide synthase 2), the gene for cyclooxygenase-2 (COX-2). Methods: To understand the role of COX-2 in tumor progression within a collagen-dense microenvironment, we treated MMTV-PyMT or MMTV-PyMT/Col1a1 tm1jae tumors prior to and after tumor formation. Animals received treatment with celecoxib, a specific COX-2 inhibitor, or placebo. Mammary tumors were examined for COX-2, inflammatory and stromal cell components, and collagen deposition through immunohistochemical analysis, immunofluorescence, multiplex cytokine ELISA and tissue imaging techniques. Results: PyMT/Col1a1 tm1jae tumors were larger, more proliferative, and expressed higher levels of COX-2 and PGE2 than PyMT tumors in wild type (WT) mice. Treatment with celecoxib significantly decreased the induced tumor size and metastasis of the PyMT/Col1a1 tumors, such that their size was not different from the smaller PyMT tumors. Celecoxib had minimal effect on the PyMT tumors. Celecoxib decreased expression levels of COX-2, PGE2, and Ki-67. Several cytokines were over-expressed in PyMT/Col1a1 compared to PyMT, and celecoxib treatment prevented their over-expression. Furthermore, macrophage and neutrophil recruitment were enhanced in PyMT/Col1a1 tumors, and this effect was inhibited by celecoxib. Notably, COX-2 inhibition reduced overall collagen deposition. Finally, when celecoxib was used prior to tumor formation, PyMT/Col1a1 tumors were fewer and smaller than in untreated animals. Conclusion: These findings suggest that COX-2 has a direct role in modulating tumor progression in tumors arising within collagen-dense microenvironments, and suggest that COX-2 may be an effective therapeutic target for women with dense breast tissue and early-stage breast cancer.

UR - http://www.scopus.com/inward/record.url?scp=84962537070&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=84962537070&partnerID=8YFLogxK

U2 - 10.1186/s13058-016-0695-3

DO - 10.1186/s13058-016-0695-3

M3 - Article

C2 - 27000374

AN - SCOPUS:84962537070

VL - 18

JO - Breast Cancer Research

JF - Breast Cancer Research

SN - 1465-5411

IS - 1

M1 - 35

ER -