Classification of breathing events using load cells under the bed.

Zachary T. Beattie, Chad C. Hagen, Misha Pavel, Tamara L. Hayes

Research output: Contribution to journalArticlepeer-review

Abstract

Sleep disturbances are prevalent, financially taxing, and have a negative effect on health and quality of life. One of the most common sleep disturbances is obstructive sleep apnea-hypopnea syndrome (OSAHS) which frequently goes undiagnosed. The gold standard for diagnosing OSAHS is polysomnography (PSG)-a procedure that is inconvenient, time-consuming, and interferes with normal sleep patterns. We are investigating an alternative to PSG in which unobtrusive load cells fitted under the bed are used to monitor movement, heart rate, and respiration. In this paper we describe how load cell data can be used to distinguish between clinically relevant disordered breathing (apneas and hypopneas) and normal respiration. The method correctly classified disordered breathing segments with a sensitivity of 0.77 and a specificity of 0.91.

Original languageEnglish (US)
Pages (from-to)3921-3924
Number of pages4
JournalConference proceedings : ... Annual International Conference of the IEEE Engineering in Medicine and Biology Society. IEEE Engineering in Medicine and Biology Society. Conference
StatePublished - 2009
Externally publishedYes

ASJC Scopus subject areas

  • Computer Vision and Pattern Recognition
  • Signal Processing
  • Biomedical Engineering
  • Health Informatics

Fingerprint Dive into the research topics of 'Classification of breathing events using load cells under the bed.'. Together they form a unique fingerprint.

Cite this