TY - JOUR
T1 - Ca2+ inhibition of type III adenylyl cyclase in vivo
AU - Wayman, G. A.
AU - Impey, S.
AU - Storm, D. R.
PY - 1995
Y1 - 1995
N2 - Type III adenylyl cyclase is stimulated by β-adrenergic agonists and glucagon in vitro and in vivo, but not by Ca2+ and calmodulin. However, the enzyme is stimulated by Ca2+ and calmodulin in vitro when it is concomitantly activated by the guanyl nucleotide stimulatory protein G(s) (Choi, E. J., Xia, Z., and Storm, D. R. (1992a) Biochemistry 31, 6492-6498). Here, we examined regulation of type III adenylyl cyclase by G(s)-coupled receptors and intracellular Ca2+ in vivo. Surprisingly, intracellular Ca2+ inhibited hormone-stimulated type III adenylyl cyclase activity. Submicromolar concentrations of intracellular free Ca2+, which stimulated type I adenylyl cyclase, inhibited glucagon- or isoproterenol-stimulated type III adenylyl cyclase. Inhibition of type III adenylyl cyclase by intracellular Ca2+ was not mediated by G(i), cAMP-dependent protein kinase, or protein kinase C. However, an inhibitor of CaM kinases antagonized Ca2+ inhibition of the enzyme, and coexpression of constitutively activated CaM kinase II completely inhibited isoproterenol-stimulated type III adenylyl cyclase activity. We propose that Ca2+ inhibition of type III adenylyl cyclase may serve as a regulatory mechanism to attenuate hormone-stimulated cAMP levels in some tissues.
AB - Type III adenylyl cyclase is stimulated by β-adrenergic agonists and glucagon in vitro and in vivo, but not by Ca2+ and calmodulin. However, the enzyme is stimulated by Ca2+ and calmodulin in vitro when it is concomitantly activated by the guanyl nucleotide stimulatory protein G(s) (Choi, E. J., Xia, Z., and Storm, D. R. (1992a) Biochemistry 31, 6492-6498). Here, we examined regulation of type III adenylyl cyclase by G(s)-coupled receptors and intracellular Ca2+ in vivo. Surprisingly, intracellular Ca2+ inhibited hormone-stimulated type III adenylyl cyclase activity. Submicromolar concentrations of intracellular free Ca2+, which stimulated type I adenylyl cyclase, inhibited glucagon- or isoproterenol-stimulated type III adenylyl cyclase. Inhibition of type III adenylyl cyclase by intracellular Ca2+ was not mediated by G(i), cAMP-dependent protein kinase, or protein kinase C. However, an inhibitor of CaM kinases antagonized Ca2+ inhibition of the enzyme, and coexpression of constitutively activated CaM kinase II completely inhibited isoproterenol-stimulated type III adenylyl cyclase activity. We propose that Ca2+ inhibition of type III adenylyl cyclase may serve as a regulatory mechanism to attenuate hormone-stimulated cAMP levels in some tissues.
UR - http://www.scopus.com/inward/record.url?scp=0028982257&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=0028982257&partnerID=8YFLogxK
U2 - 10.1074/jbc.270.37.21480
DO - 10.1074/jbc.270.37.21480
M3 - Article
C2 - 7665559
AN - SCOPUS:0028982257
VL - 270
SP - 21480
EP - 21486
JO - Journal of Biological Chemistry
JF - Journal of Biological Chemistry
SN - 0021-9258
IS - 37
ER -