Axonal structure and function after axolemmal leakage in the squid giant axon

P. E. Gallant, J. A. Galbraith

Research output: Contribution to journalArticlepeer-review

20 Scopus citations

Abstract

Membrane leakage is a common consequence of traumatic nerve injury. In order to measure the early secondary effects of different levels of membrane leakage on axonal structure and function we studied the squid giant axon after electroporation at field strengths of 0.5, 1.0, 1.6, or 3.3 kV/cm. Immediately after mild electroporation at 0.5 kV/cm, 40% of the axons had no action potentials, but by 1 h all of the mildly electroporated axons had recovered their action potentials. Many large organelles (mitochondria) were swollen, however, and their transport was reduced by 62% 1 h after this mild electroporation. One hour after moderate electroporation at 1.0 kV/cm, most of the axons had no action potentials, most large organelles were swollen, and their transport was reduced by 98 %, whereas small organelle transport was reduced by 75 %. Finally at severe electroporation levels of 1.65-3.0 kV/cm all conduction and transport was lost and the gel-like axoplasmic structure was dumped or liquefied. The structural damage and transport block seen after severe and moderate potation were early secondary injuries that could be prevented by placing the porated axons in an intracellular-type medium (low in Ca2+, Na+, and Cl-) immediately after poration. In moderately, but not severely, porated axons this protection of organelle transport and structure persisted, and action potential conduction returned when the axons were returned to the previously injurious extracellular-type medium. This suggests that the primary damage, the axolemmal leak, was repaired while the moderately porated axons were in the protective intracellular-type medium.

Original languageEnglish (US)
Pages (from-to)811-822
Number of pages12
JournalJournal of neurotrauma
Volume14
Issue number11
DOIs
StatePublished - Nov 1997

Keywords

  • Axonal protection
  • Axoplasmic transport
  • Degeneration
  • Electroporation
  • Membrane resealing

ASJC Scopus subject areas

  • Clinical Neurology

Fingerprint Dive into the research topics of 'Axonal structure and function after axolemmal leakage in the squid giant axon'. Together they form a unique fingerprint.

Cite this