Altered retinal neovascularization in TNF receptor-deficient mice

Ron C. Ilg, Michael H. Davies, Michael (Mike) Powers

Research output: Contribution to journalArticle

13 Citations (Scopus)

Abstract

Purpose: Tumor necrosis factor alpha (TNF-α) has been shown to play an integral role in inflammation, apoptosis, and angiogenesis. We induced retinopathy in tumor necrosis factor receptor-deficient mice (TNFR-) in order to examine the role TNF-α plays in the pathogenesis of retinopathy of prematurity. Methods: On postnatal day (P) 7, TNFR-knockout mice and their congenic controls, B6129JF1 (B6129) mice, were exposed to 75% oxygen for up to 5 days and then allowed to recover in room air. Retinopathy was qualitatively assessed by examining fluorescein (FITC) angiography. Furthermore, retinal vascular changes were quantified by immunolabeling retinal vessels in cross sections with an anti-type IV collagen antibody. Disease pathology was quantified by counting preretinal neovascular nuclei. TUNEL analysis was performed to determine if TNFR-mice exhibited a reduced number of apoptotic cells after oxygen-induced retinopathy. Results: FITC-perfused retinas qualitatively demonstrated similar degrees of vascular development and vasoobliteration on P12 in the room air and hyperoxia-exposed TNFR- and B6129 mice. On P17, the hyperoxia-exposed TNFR- and B6129 mice qualitatively appeared to develop a similar degree of retinal neovascularization. However, FITC-perfused retinal flat mounts on P21 suggested that the hyperoxia-exposed TNFR-mice had a prolonged neovascular response compared to the hyperoxia-exposed B6129 mice. Type IV collagen staining revealed delayed development of the deep intraretinal vessels in the TNFR-room control mice and hyperoxia-exposed TNFR-mice, as compared with B6129 controls. On P17, the average number of preretinal nuclei was similar between the hyperoxia-exposed TNFR-mice and B6129 mice. However, on P21, the neovascularization in the B6129 mice had regressed (3.9 ± 0.57, preretinal nuclei), whereas neovascularization in the TNFR-mice remained prominent (25.6 ± 6.3, preretinal nuclei). On P21, the B6129 mice exhibited increased apoptosis in preretinal vascular tufts as compared with TNFR- mice. Conclusions: TNFR- mice had both an altered development of the intraretinal vessels and altered angiogenic response after hyperoxia. Therefore, absence of the TNF-α pathway appears to disrupt the local microenvironment promoting angiogenesis in the deep retinal vascular network, as well as altering tuft regression by modifying endothelial cell apoptosis.

Original languageEnglish (US)
Pages (from-to)1003-1013
Number of pages11
JournalCurrent Eye Research
Volume30
Issue number11
DOIs
StatePublished - Nov 1 2005

Fingerprint

Retinal Neovascularization
Tumor Necrosis Factor Receptors
Hyperoxia
Retinal Vessels
Fluorescein-5-isothiocyanate
Collagen Type IV
Tumor Necrosis Factor-alpha
Apoptosis

Keywords

  • Angiogenesis
  • Apoptosis
  • Cytokine
  • Neovascularization
  • Tumor necrosis factor

ASJC Scopus subject areas

  • Ophthalmology
  • Sensory Systems

Cite this

Altered retinal neovascularization in TNF receptor-deficient mice. / Ilg, Ron C.; Davies, Michael H.; Powers, Michael (Mike).

In: Current Eye Research, Vol. 30, No. 11, 01.11.2005, p. 1003-1013.

Research output: Contribution to journalArticle

Ilg, Ron C. ; Davies, Michael H. ; Powers, Michael (Mike). / Altered retinal neovascularization in TNF receptor-deficient mice. In: Current Eye Research. 2005 ; Vol. 30, No. 11. pp. 1003-1013.
@article{7f4e818ef06141998370448e15ab018a,
title = "Altered retinal neovascularization in TNF receptor-deficient mice",
abstract = "Purpose: Tumor necrosis factor alpha (TNF-α) has been shown to play an integral role in inflammation, apoptosis, and angiogenesis. We induced retinopathy in tumor necrosis factor receptor-deficient mice (TNFR-) in order to examine the role TNF-α plays in the pathogenesis of retinopathy of prematurity. Methods: On postnatal day (P) 7, TNFR-knockout mice and their congenic controls, B6129JF1 (B6129) mice, were exposed to 75{\%} oxygen for up to 5 days and then allowed to recover in room air. Retinopathy was qualitatively assessed by examining fluorescein (FITC) angiography. Furthermore, retinal vascular changes were quantified by immunolabeling retinal vessels in cross sections with an anti-type IV collagen antibody. Disease pathology was quantified by counting preretinal neovascular nuclei. TUNEL analysis was performed to determine if TNFR-mice exhibited a reduced number of apoptotic cells after oxygen-induced retinopathy. Results: FITC-perfused retinas qualitatively demonstrated similar degrees of vascular development and vasoobliteration on P12 in the room air and hyperoxia-exposed TNFR- and B6129 mice. On P17, the hyperoxia-exposed TNFR- and B6129 mice qualitatively appeared to develop a similar degree of retinal neovascularization. However, FITC-perfused retinal flat mounts on P21 suggested that the hyperoxia-exposed TNFR-mice had a prolonged neovascular response compared to the hyperoxia-exposed B6129 mice. Type IV collagen staining revealed delayed development of the deep intraretinal vessels in the TNFR-room control mice and hyperoxia-exposed TNFR-mice, as compared with B6129 controls. On P17, the average number of preretinal nuclei was similar between the hyperoxia-exposed TNFR-mice and B6129 mice. However, on P21, the neovascularization in the B6129 mice had regressed (3.9 ± 0.57, preretinal nuclei), whereas neovascularization in the TNFR-mice remained prominent (25.6 ± 6.3, preretinal nuclei). On P21, the B6129 mice exhibited increased apoptosis in preretinal vascular tufts as compared with TNFR- mice. Conclusions: TNFR- mice had both an altered development of the intraretinal vessels and altered angiogenic response after hyperoxia. Therefore, absence of the TNF-α pathway appears to disrupt the local microenvironment promoting angiogenesis in the deep retinal vascular network, as well as altering tuft regression by modifying endothelial cell apoptosis.",
keywords = "Angiogenesis, Apoptosis, Cytokine, Neovascularization, Tumor necrosis factor",
author = "Ilg, {Ron C.} and Davies, {Michael H.} and Powers, {Michael (Mike)}",
year = "2005",
month = "11",
day = "1",
doi = "10.1080/02713680500330355",
language = "English (US)",
volume = "30",
pages = "1003--1013",
journal = "Current Eye Research",
issn = "0271-3683",
publisher = "Informa Healthcare",
number = "11",

}

TY - JOUR

T1 - Altered retinal neovascularization in TNF receptor-deficient mice

AU - Ilg, Ron C.

AU - Davies, Michael H.

AU - Powers, Michael (Mike)

PY - 2005/11/1

Y1 - 2005/11/1

N2 - Purpose: Tumor necrosis factor alpha (TNF-α) has been shown to play an integral role in inflammation, apoptosis, and angiogenesis. We induced retinopathy in tumor necrosis factor receptor-deficient mice (TNFR-) in order to examine the role TNF-α plays in the pathogenesis of retinopathy of prematurity. Methods: On postnatal day (P) 7, TNFR-knockout mice and their congenic controls, B6129JF1 (B6129) mice, were exposed to 75% oxygen for up to 5 days and then allowed to recover in room air. Retinopathy was qualitatively assessed by examining fluorescein (FITC) angiography. Furthermore, retinal vascular changes were quantified by immunolabeling retinal vessels in cross sections with an anti-type IV collagen antibody. Disease pathology was quantified by counting preretinal neovascular nuclei. TUNEL analysis was performed to determine if TNFR-mice exhibited a reduced number of apoptotic cells after oxygen-induced retinopathy. Results: FITC-perfused retinas qualitatively demonstrated similar degrees of vascular development and vasoobliteration on P12 in the room air and hyperoxia-exposed TNFR- and B6129 mice. On P17, the hyperoxia-exposed TNFR- and B6129 mice qualitatively appeared to develop a similar degree of retinal neovascularization. However, FITC-perfused retinal flat mounts on P21 suggested that the hyperoxia-exposed TNFR-mice had a prolonged neovascular response compared to the hyperoxia-exposed B6129 mice. Type IV collagen staining revealed delayed development of the deep intraretinal vessels in the TNFR-room control mice and hyperoxia-exposed TNFR-mice, as compared with B6129 controls. On P17, the average number of preretinal nuclei was similar between the hyperoxia-exposed TNFR-mice and B6129 mice. However, on P21, the neovascularization in the B6129 mice had regressed (3.9 ± 0.57, preretinal nuclei), whereas neovascularization in the TNFR-mice remained prominent (25.6 ± 6.3, preretinal nuclei). On P21, the B6129 mice exhibited increased apoptosis in preretinal vascular tufts as compared with TNFR- mice. Conclusions: TNFR- mice had both an altered development of the intraretinal vessels and altered angiogenic response after hyperoxia. Therefore, absence of the TNF-α pathway appears to disrupt the local microenvironment promoting angiogenesis in the deep retinal vascular network, as well as altering tuft regression by modifying endothelial cell apoptosis.

AB - Purpose: Tumor necrosis factor alpha (TNF-α) has been shown to play an integral role in inflammation, apoptosis, and angiogenesis. We induced retinopathy in tumor necrosis factor receptor-deficient mice (TNFR-) in order to examine the role TNF-α plays in the pathogenesis of retinopathy of prematurity. Methods: On postnatal day (P) 7, TNFR-knockout mice and their congenic controls, B6129JF1 (B6129) mice, were exposed to 75% oxygen for up to 5 days and then allowed to recover in room air. Retinopathy was qualitatively assessed by examining fluorescein (FITC) angiography. Furthermore, retinal vascular changes were quantified by immunolabeling retinal vessels in cross sections with an anti-type IV collagen antibody. Disease pathology was quantified by counting preretinal neovascular nuclei. TUNEL analysis was performed to determine if TNFR-mice exhibited a reduced number of apoptotic cells after oxygen-induced retinopathy. Results: FITC-perfused retinas qualitatively demonstrated similar degrees of vascular development and vasoobliteration on P12 in the room air and hyperoxia-exposed TNFR- and B6129 mice. On P17, the hyperoxia-exposed TNFR- and B6129 mice qualitatively appeared to develop a similar degree of retinal neovascularization. However, FITC-perfused retinal flat mounts on P21 suggested that the hyperoxia-exposed TNFR-mice had a prolonged neovascular response compared to the hyperoxia-exposed B6129 mice. Type IV collagen staining revealed delayed development of the deep intraretinal vessels in the TNFR-room control mice and hyperoxia-exposed TNFR-mice, as compared with B6129 controls. On P17, the average number of preretinal nuclei was similar between the hyperoxia-exposed TNFR-mice and B6129 mice. However, on P21, the neovascularization in the B6129 mice had regressed (3.9 ± 0.57, preretinal nuclei), whereas neovascularization in the TNFR-mice remained prominent (25.6 ± 6.3, preretinal nuclei). On P21, the B6129 mice exhibited increased apoptosis in preretinal vascular tufts as compared with TNFR- mice. Conclusions: TNFR- mice had both an altered development of the intraretinal vessels and altered angiogenic response after hyperoxia. Therefore, absence of the TNF-α pathway appears to disrupt the local microenvironment promoting angiogenesis in the deep retinal vascular network, as well as altering tuft regression by modifying endothelial cell apoptosis.

KW - Angiogenesis

KW - Apoptosis

KW - Cytokine

KW - Neovascularization

KW - Tumor necrosis factor

UR - http://www.scopus.com/inward/record.url?scp=31544476565&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=31544476565&partnerID=8YFLogxK

U2 - 10.1080/02713680500330355

DO - 10.1080/02713680500330355

M3 - Article

C2 - 16282134

AN - SCOPUS:31544476565

VL - 30

SP - 1003

EP - 1013

JO - Current Eye Research

JF - Current Eye Research

SN - 0271-3683

IS - 11

ER -