TY - JOUR
T1 - A replicating cytomegalovirus-based vaccine encoding a single Ebola virus nucleoprotein CTL epitope confers protection against Ebola virus
AU - Tsuda, Yoshimi
AU - Caposio, Patrizia
AU - Parkins, Christopher J.
AU - Botto, Sara
AU - Messaoudi, Ilhem
AU - Cicin-Sain, Luka
AU - Feldmann, Heinz
AU - Jarvis, Michael A.
PY - 2011/8
Y1 - 2011/8
N2 - Background: Human outbreaks of Ebola virus (EBOV) are a serious human health concern in Central Africa. Great apes (gorillas/chimpanzees) are an important source of EBOV transmission to humans due to increased hunting of wildlife including the 'bush-meat' trade. Cytomegalovirus (CMV) is an highly immunogenic virus that has shown recent utility as a vaccine platform. CMV-based vaccines also have the unique potential to re-infect and disseminate through target populations regardless of prior CMV immunity, which may be ideal for achieving high vaccine coverage in inaccessible populations such as great apes. Methodology/Principal Findings: We hypothesize that a vaccine strategy using CMV-based vectors expressing EBOV antigens may be ideally suited for use in inaccessible wildlife populations. To establish a 'proof-of-concept' for CMV-based vaccines against EBOV, we constructed a mouse CMV (MCMV) vector expressing a CD8+ T cell epitope from the nucleoprotein (NP) of Zaire ebolavirus (ZEBOV) (MCMV/ZEBOV-NPCTL). MCMV/ZEBOV-NPCTL induced high levels of long-lasting (>8 months) CD8+ T cells against ZEBOV NP in mice. Importantly, all vaccinated animals were protected against lethal ZEBOV challenge. Low levels of anti-ZEBOV antibodies were only sporadically detected in vaccinated animals prior to ZEBOV challenge suggesting a role, at least in part, for T cells in protection. Conclusions/Significance: This study demonstrates the ability of a CMV-based vaccine approach to protect against an highly virulent human pathogen, and supports the potential for 'disseminating' CMV-based EBOV vaccines to prevent EBOV transmission in wildlife populations.
AB - Background: Human outbreaks of Ebola virus (EBOV) are a serious human health concern in Central Africa. Great apes (gorillas/chimpanzees) are an important source of EBOV transmission to humans due to increased hunting of wildlife including the 'bush-meat' trade. Cytomegalovirus (CMV) is an highly immunogenic virus that has shown recent utility as a vaccine platform. CMV-based vaccines also have the unique potential to re-infect and disseminate through target populations regardless of prior CMV immunity, which may be ideal for achieving high vaccine coverage in inaccessible populations such as great apes. Methodology/Principal Findings: We hypothesize that a vaccine strategy using CMV-based vectors expressing EBOV antigens may be ideally suited for use in inaccessible wildlife populations. To establish a 'proof-of-concept' for CMV-based vaccines against EBOV, we constructed a mouse CMV (MCMV) vector expressing a CD8+ T cell epitope from the nucleoprotein (NP) of Zaire ebolavirus (ZEBOV) (MCMV/ZEBOV-NPCTL). MCMV/ZEBOV-NPCTL induced high levels of long-lasting (>8 months) CD8+ T cells against ZEBOV NP in mice. Importantly, all vaccinated animals were protected against lethal ZEBOV challenge. Low levels of anti-ZEBOV antibodies were only sporadically detected in vaccinated animals prior to ZEBOV challenge suggesting a role, at least in part, for T cells in protection. Conclusions/Significance: This study demonstrates the ability of a CMV-based vaccine approach to protect against an highly virulent human pathogen, and supports the potential for 'disseminating' CMV-based EBOV vaccines to prevent EBOV transmission in wildlife populations.
UR - http://www.scopus.com/inward/record.url?scp=80052417476&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=80052417476&partnerID=8YFLogxK
U2 - 10.1371/journal.pntd.0001275
DO - 10.1371/journal.pntd.0001275
M3 - Article
C2 - 21858240
AN - SCOPUS:80052417476
SN - 1935-2727
VL - 5
JO - PLoS Neglected Tropical Diseases
JF - PLoS Neglected Tropical Diseases
IS - 8
M1 - e1275
ER -