TY - JOUR
T1 - Visualizing protein kinase A activity in head-fixed behaving mice using in vivo two-photon fluorescence lifetime imaging microscopy
AU - Jongbloets, Bart C.
AU - Ma, Lei
AU - Mao, Tianyi
AU - Zhong, Haining
N1 - Funding Information:
We thank Ms. Tess J. Lameyer, Ms. Ruth Frank, and Dr. Michael A. Muniak for edits and comments, and Dr. Ryohei Yasuda at Max Planck Florida for 2pFLIM acquisition software. This work was supported by two BRAIN Initiative awards U01NS094247 (H.Z. and T.M.) and R01NS104944 (H.Z. and T.M.), an R01 grant R01NS081071 (T.M.), and an R21 grant R21NS097856 (H.Z.). All awards are from the National Institute of Neurological Disorders and Stroke, United States.
Publisher Copyright:
© 2019 Journal of Visualized Experiments.
PY - 2019/6
Y1 - 2019/6
N2 - Neuromodulation exerts powerful control over brain function. Dysfunction of neuromodulatory systems results in neurological and psychiatric disorders. Despite their importance, technologies for tracking neuromodulatory events with cellular resolution are just beginning to emerge. Neuromodulators, such as dopamine, norepinephrine, acetylcholine, and serotonin, trigger intracellular signaling events via their respective G protein-coupled receptors to modulate neuronal excitability, synaptic communications, and other neuronal functions, thereby regulating information processing in the neuronal network. The above mentioned neuromodulators converge onto the cAMP/protein kinase A (PKA) pathway. Therefore, in vivo PKA imaging with single-cell resolution was developed as a readout for neuromodulatory events in a manner analogous to calcium imaging for neuronal electrical activities. Herein, a method is presented to visualize PKA activity at the level of individual neurons in the cortex of head-fixed behaving mice. To do so, an improved A-kinase activity reporter (AKAR), called tAKARα, is used, which is based on Förster resonance energy transfer (FRET). This genetically-encoded PKA sensor is introduced into the motor cortex via in utero electroporation (IUE) of DNA plasmids, or stereotaxic injection of adeno-associated virus (AAV). FRET changes are imaged using two-photon fluorescence lifetime imaging microscopy (2pFLIM), which offers advantages over ratiometric FRET measurements for quantifying FRET signal in light-scattering brain tissue. To study PKA activities during enforced locomotion, tAKARα is imaged through a chronic cranial window above the cortex of awake, head-fixed mice, which run or rest on a speed-controlled motorized treadmill. This imaging approach will be applicable to many other brain regions to study corresponding behavior-induced PKA activities and to other FLIM-based sensors for in vivo imaging.
AB - Neuromodulation exerts powerful control over brain function. Dysfunction of neuromodulatory systems results in neurological and psychiatric disorders. Despite their importance, technologies for tracking neuromodulatory events with cellular resolution are just beginning to emerge. Neuromodulators, such as dopamine, norepinephrine, acetylcholine, and serotonin, trigger intracellular signaling events via their respective G protein-coupled receptors to modulate neuronal excitability, synaptic communications, and other neuronal functions, thereby regulating information processing in the neuronal network. The above mentioned neuromodulators converge onto the cAMP/protein kinase A (PKA) pathway. Therefore, in vivo PKA imaging with single-cell resolution was developed as a readout for neuromodulatory events in a manner analogous to calcium imaging for neuronal electrical activities. Herein, a method is presented to visualize PKA activity at the level of individual neurons in the cortex of head-fixed behaving mice. To do so, an improved A-kinase activity reporter (AKAR), called tAKARα, is used, which is based on Förster resonance energy transfer (FRET). This genetically-encoded PKA sensor is introduced into the motor cortex via in utero electroporation (IUE) of DNA plasmids, or stereotaxic injection of adeno-associated virus (AAV). FRET changes are imaged using two-photon fluorescence lifetime imaging microscopy (2pFLIM), which offers advantages over ratiometric FRET measurements for quantifying FRET signal in light-scattering brain tissue. To study PKA activities during enforced locomotion, tAKARα is imaged through a chronic cranial window above the cortex of awake, head-fixed mice, which run or rest on a speed-controlled motorized treadmill. This imaging approach will be applicable to many other brain regions to study corresponding behavior-induced PKA activities and to other FLIM-based sensors for in vivo imaging.
KW - A-kinase activity reporter (AKAR)
KW - CAMP-dependent protein kinase/protein kinase A (PKA)
KW - Craniotomy
KW - Förster resonance energy transfer (FRET)
KW - In vivo two-photon fluorescence lifetime imaging microscopy (2pFLIM)
KW - Issue 148
KW - Locomotion
KW - Neuromodulation
KW - Neuroscience
KW - TAKARα
UR - http://www.scopus.com/inward/record.url?scp=85068564795&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85068564795&partnerID=8YFLogxK
U2 - 10.3791/59526
DO - 10.3791/59526
M3 - Article
C2 - 31233029
AN - SCOPUS:85068564795
SN - 1940-087X
VL - 2019
JO - Journal of visualized experiments : JoVE
JF - Journal of visualized experiments : JoVE
IS - 148
M1 - e59526
ER -