Virus-induced asthma attack: The importance of allergic inflammation in response to viral antigen in an animal model of asthma

Christopher Skappak, Ramses Ilarraza, Ying qi Wu, Matthew G. Drake, Darryl J. Adamko

Research output: Contribution to journalArticlepeer-review

4 Scopus citations


Asthma exacerbation can be a life-threatening condition, and is most often triggered by common respiratory viruses. Poor asthma control and worsening of respiratory function is associated with increased airway inflammation, including eosinophilia. Prevention of asthma exacerbation relies on treatment with corticosteroids, which preferentially inhibit allergic inflammation like eosinophils. Human studies demonstrate that inactivated virus can trigger eosinophil activation in vitro through antigen presentation and memory CD4+ lymphocytes. We hypothesized that animals with immunologic memory to a respiratory virus would also develop airway hyperresponsiveness in response to a UV-inactivated form of the virus if they have pre-existing allergic airway inflammation. Guinea pigs were ovalbumin-sensitized, infected with live parainfluenza virus (PIV), aerosol-challenged with ovalbumin, and then reinoculated 60 days later with live or UV-inactivated PIV. Some animals were either treated with dexamethasone prior to the second viral exposure. Lymphocytes were isolated from parabronchial lymph nodes to confirm immunologic memory to the virus. Airway reactivity was measured and inflammation was assessed using bronchoalveolar lavage and lung histology. The induction of viral immunologic memory was confirmed in infected animals. Allergen sensitized and challenged animals developed airway hyperreactivity with eosinophilic airway inflammation when re-exposed to UV-inactivated PIV, while non-sensitized animals did not. Airway hyperreactivity in the sensitized animals was inhibited by pre-treatment with dexamethasone. We suggest that the response of allergic inflammation to virus antigen is a significant factor causing asthma exacerbation. We propose that this is one mechanism explaining how corticosteroids prevent virus-induced asthma attack.

Original languageEnglish (US)
Article numbere0181425
JournalPloS one
Issue number7
StatePublished - Jul 2017

ASJC Scopus subject areas

  • General


Dive into the research topics of 'Virus-induced asthma attack: The importance of allergic inflammation in response to viral antigen in an animal model of asthma'. Together they form a unique fingerprint.

Cite this