TY - JOUR
T1 - Verification of a genetic locus for methamphetamine intake and the impact of morphine
AU - Eastwood, Emily C.
AU - Eshleman, Amy J.
AU - Janowsky, Aaron
AU - Phillips, Tamara J.
N1 - Funding Information:
Acknowledgements The research presented here was supported by Department of Veterans Affairs Grants I01BX002106 and I01BX002758, National Institutes of Health Grants T32DA07262, P50DA018165, U01DA041579, and R24AA020245, and a National Institutes of Health-Veterans Affairs interagency agreement. The views and opinions expressed are those of the authors and should not be construed to represent the views of the affiliated institutions or the funding agencies. We thank Harue Baba for her help with genotyping and data collection and Robert Johnson for his technical support with the receptor binding assays. We also thank Drs. Glenn Doyle and Thomas Ferraro for provision of the congenic mice from which we established our breeding stock for the current study.
Publisher Copyright:
© 2017, Springer Science+Business Media, LLC, part of Springer Nature (outside the USA).
PY - 2018/4/1
Y1 - 2018/4/1
N2 - A quantitative trait locus (QTL) on proximal chromosome (Chr) 10 accounts for > 50% of the genetic variance in methamphetamine (MA) intake in mice selectively bred for high (MAHDR) and low (MALDR) voluntary MA drinking. The µ-opioid receptor (MOP-r) gene, Oprm1, resides at the proximal end of Chr 10, and buprenorphine reduces MA intake in MAHDR mice. However, this drug has only partial agonist effects at MOP-r. We investigated the impact of a full MOP-r agonist, morphine, on MA intake and saccharin intake, measured MOP-r density and affinity in several brain regions of the MA drinking lines and their C57BL/6J (B6) and DBA/2J (D2) progenitor strains, and measured MA intake in two congenic strains of mice to verify the QTL and reduce the QTL interval. Morphine reduced MA intake in the MAHDR line, but also reduced saccharin and total fluid intake. MOP-r density was lower in the medial prefrontal cortex of MAHDR, compared to MALDR, mice, but not in the nucleus accumbens or ventral midbrain; there were no MOP-r affinity differences. No significant differences in MOP-r density or affinity were found between the progenitor strains. Finally, Chr 10 congenic results were consistent with previous data suggesting that Oprm1 is not a quantitative trait gene, but is impacted by the gene network underlying MA intake. Stimulation of opioid pathways by a full agonist can reduce MA intake, but may also non-specifically affect consummatory behavior; thus, a partial agonist may be a better pharmacotherapeutic.
AB - A quantitative trait locus (QTL) on proximal chromosome (Chr) 10 accounts for > 50% of the genetic variance in methamphetamine (MA) intake in mice selectively bred for high (MAHDR) and low (MALDR) voluntary MA drinking. The µ-opioid receptor (MOP-r) gene, Oprm1, resides at the proximal end of Chr 10, and buprenorphine reduces MA intake in MAHDR mice. However, this drug has only partial agonist effects at MOP-r. We investigated the impact of a full MOP-r agonist, morphine, on MA intake and saccharin intake, measured MOP-r density and affinity in several brain regions of the MA drinking lines and their C57BL/6J (B6) and DBA/2J (D2) progenitor strains, and measured MA intake in two congenic strains of mice to verify the QTL and reduce the QTL interval. Morphine reduced MA intake in the MAHDR line, but also reduced saccharin and total fluid intake. MOP-r density was lower in the medial prefrontal cortex of MAHDR, compared to MALDR, mice, but not in the nucleus accumbens or ventral midbrain; there were no MOP-r affinity differences. No significant differences in MOP-r density or affinity were found between the progenitor strains. Finally, Chr 10 congenic results were consistent with previous data suggesting that Oprm1 is not a quantitative trait gene, but is impacted by the gene network underlying MA intake. Stimulation of opioid pathways by a full agonist can reduce MA intake, but may also non-specifically affect consummatory behavior; thus, a partial agonist may be a better pharmacotherapeutic.
UR - http://www.scopus.com/inward/record.url?scp=85033445249&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85033445249&partnerID=8YFLogxK
U2 - 10.1007/s00335-017-9724-5
DO - 10.1007/s00335-017-9724-5
M3 - Article
C2 - 29127441
AN - SCOPUS:85033445249
SN - 0938-8990
VL - 29
SP - 260
EP - 272
JO - Mammalian Genome
JF - Mammalian Genome
IS - 3-4
ER -