Use of galvanic vestibular feedback for a balance prosthesis

Research output: Chapter in Book/Report/Conference proceedingConference contribution

5 Scopus citations

Abstract

Activation of vestibular afferents by a bilateral bipolar galvanic vestibular stimulus (GVS) evokes medial-lateral (ML) body sway. By applying a GVS feedback signal that is a function of measured ML head motion, the potential exists for GVS to restore a useful vestibular contribution to ML balance control in vestibular-deficient subjects who remain responsive to GVS. A key to developing an effective balance prosthesis using GVS is to determine the functional relationship between GVS and its influence on the brain's internal estimate of head motion. We describe how a model-based interpretation of GVS-evoked body sway can be used to identify this functional relationship. Results indicate that the GVS-evoked internal motion estimate is effectively a low-pass filtered version of the GVS current. With preliminary data, we demonstrate that GVS feedback, compensated for the identified low-pass characteristics, can either remove the ability of a subject with normal vestibular function to use vestibular information for balance control, or can restore the ability of a subject with bilateral vestibular loss to maintain balance in a condition requiring vestibular information for balance control.

Original languageEnglish (US)
Title of host publication2012 Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBC 2012
Pages6137-6140
Number of pages4
DOIs
StatePublished - Dec 14 2012
Event34th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBS 2012 - San Diego, CA, United States
Duration: Aug 28 2012Sep 1 2012

Publication series

NameProceedings of the Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBS
ISSN (Print)1557-170X

Other

Other34th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBS 2012
CountryUnited States
CitySan Diego, CA
Period8/28/129/1/12

    Fingerprint

ASJC Scopus subject areas

  • Signal Processing
  • Biomedical Engineering
  • Computer Vision and Pattern Recognition
  • Health Informatics

Cite this

Peterka, R. J. (2012). Use of galvanic vestibular feedback for a balance prosthesis. In 2012 Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBC 2012 (pp. 6137-6140). [6347394] (Proceedings of the Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBS). https://doi.org/10.1109/EMBC.2012.6347394