Urocortin 1 in the dorsal raphe regulates food and fluid consumption, but not ethanol preference in C57BL/6J mice

A. Z. Weitemier, Andrey Ryabinin

Research output: Contribution to journalArticle

31 Citations (Scopus)

Abstract

The midbrain-localized Edinger-Westphal nucleus is a major site of production of urocortin 1. Urocortin 1 is a neuropeptide related to corticotropin-releasing factor that has high affinity for corticotropin- releasing factor type-1 and corticotropin-releasing factor type-2 receptors. In several mouse models, the amount of urocortin 1 neurons within the Edinger-Westphal nucleus is positively associated with ethanol preference. Central administration of urocortin 1 exerts potent anorectic actions, and implicates endogenous urocortin 1 in the regulation of food intake. It is possible that brain areas such as the dorsal raphe, which receives urocortin 1 from the Edinger-Westphal nucleus and highly expresses corticotropin-releasing factor type-2 receptors, mediate the actions of urocortin 1 on feeding and ethanol preference. In this study the amount of food, water and ethanol consumed over the dark cycle by ethanol-preferring C57BL/6J mice was measured after injection of artificial cerebrospinal fluid vehicle, urocortin 1, corticotropin-releasing factor and the corticotropin-releasing factor type-2 receptor-selective antagonist antisauvagine-30 onto the dorsal raphe. Compared with vehicle, corticotropin-releasing factor and antisauvagine-30, urocortin 1 induced a significant reduction in the amount of food consumed overnight. Also, compared with antisauvagine-30 treatment, urocortin 1 significantly reduced the amount of weight gained during this time. Urocortin 1 also significantly reduced the total amount of fluid consumed, but did not alter ethanol preference, which was high during all treatments. These results suggest that the dorsal raphe is a neuroanatomical substrate of urocortin 1-induced reductions in feeding, possibly through modulation of serotonergic activity from this nucleus. In addition, it is suggested that endogenous urocortin 1 in this area, such as from the Edinger-Westphal nucleus, does not regulate ethanol preference in C57BL/6J mice.

Original languageEnglish (US)
Pages (from-to)1439-1445
Number of pages7
JournalNeuroscience
Volume137
Issue number4
DOIs
StatePublished - 2006

Fingerprint

Urocortins
Inbred C57BL Mouse
Ethanol
Food
Corticotropin-Releasing Hormone
Dorsal Raphe Nucleus
Appetite Regulation
Appetite Depressants
Mesencephalon
Neuropeptides

Keywords

  • Alcohol
  • Corticotropin
  • CRF
  • Depression
  • Energy balance
  • Serotonin

ASJC Scopus subject areas

  • Neuroscience(all)

Cite this

Urocortin 1 in the dorsal raphe regulates food and fluid consumption, but not ethanol preference in C57BL/6J mice. / Weitemier, A. Z.; Ryabinin, Andrey.

In: Neuroscience, Vol. 137, No. 4, 2006, p. 1439-1445.

Research output: Contribution to journalArticle

@article{d28a0621a67043369d7644e98216ac1d,
title = "Urocortin 1 in the dorsal raphe regulates food and fluid consumption, but not ethanol preference in C57BL/6J mice",
abstract = "The midbrain-localized Edinger-Westphal nucleus is a major site of production of urocortin 1. Urocortin 1 is a neuropeptide related to corticotropin-releasing factor that has high affinity for corticotropin- releasing factor type-1 and corticotropin-releasing factor type-2 receptors. In several mouse models, the amount of urocortin 1 neurons within the Edinger-Westphal nucleus is positively associated with ethanol preference. Central administration of urocortin 1 exerts potent anorectic actions, and implicates endogenous urocortin 1 in the regulation of food intake. It is possible that brain areas such as the dorsal raphe, which receives urocortin 1 from the Edinger-Westphal nucleus and highly expresses corticotropin-releasing factor type-2 receptors, mediate the actions of urocortin 1 on feeding and ethanol preference. In this study the amount of food, water and ethanol consumed over the dark cycle by ethanol-preferring C57BL/6J mice was measured after injection of artificial cerebrospinal fluid vehicle, urocortin 1, corticotropin-releasing factor and the corticotropin-releasing factor type-2 receptor-selective antagonist antisauvagine-30 onto the dorsal raphe. Compared with vehicle, corticotropin-releasing factor and antisauvagine-30, urocortin 1 induced a significant reduction in the amount of food consumed overnight. Also, compared with antisauvagine-30 treatment, urocortin 1 significantly reduced the amount of weight gained during this time. Urocortin 1 also significantly reduced the total amount of fluid consumed, but did not alter ethanol preference, which was high during all treatments. These results suggest that the dorsal raphe is a neuroanatomical substrate of urocortin 1-induced reductions in feeding, possibly through modulation of serotonergic activity from this nucleus. In addition, it is suggested that endogenous urocortin 1 in this area, such as from the Edinger-Westphal nucleus, does not regulate ethanol preference in C57BL/6J mice.",
keywords = "Alcohol, Corticotropin, CRF, Depression, Energy balance, Serotonin",
author = "Weitemier, {A. Z.} and Andrey Ryabinin",
year = "2006",
doi = "10.1016/j.neuroscience.2005.10.021",
language = "English (US)",
volume = "137",
pages = "1439--1445",
journal = "Neuroscience",
issn = "0306-4522",
publisher = "Elsevier Limited",
number = "4",

}

TY - JOUR

T1 - Urocortin 1 in the dorsal raphe regulates food and fluid consumption, but not ethanol preference in C57BL/6J mice

AU - Weitemier, A. Z.

AU - Ryabinin, Andrey

PY - 2006

Y1 - 2006

N2 - The midbrain-localized Edinger-Westphal nucleus is a major site of production of urocortin 1. Urocortin 1 is a neuropeptide related to corticotropin-releasing factor that has high affinity for corticotropin- releasing factor type-1 and corticotropin-releasing factor type-2 receptors. In several mouse models, the amount of urocortin 1 neurons within the Edinger-Westphal nucleus is positively associated with ethanol preference. Central administration of urocortin 1 exerts potent anorectic actions, and implicates endogenous urocortin 1 in the regulation of food intake. It is possible that brain areas such as the dorsal raphe, which receives urocortin 1 from the Edinger-Westphal nucleus and highly expresses corticotropin-releasing factor type-2 receptors, mediate the actions of urocortin 1 on feeding and ethanol preference. In this study the amount of food, water and ethanol consumed over the dark cycle by ethanol-preferring C57BL/6J mice was measured after injection of artificial cerebrospinal fluid vehicle, urocortin 1, corticotropin-releasing factor and the corticotropin-releasing factor type-2 receptor-selective antagonist antisauvagine-30 onto the dorsal raphe. Compared with vehicle, corticotropin-releasing factor and antisauvagine-30, urocortin 1 induced a significant reduction in the amount of food consumed overnight. Also, compared with antisauvagine-30 treatment, urocortin 1 significantly reduced the amount of weight gained during this time. Urocortin 1 also significantly reduced the total amount of fluid consumed, but did not alter ethanol preference, which was high during all treatments. These results suggest that the dorsal raphe is a neuroanatomical substrate of urocortin 1-induced reductions in feeding, possibly through modulation of serotonergic activity from this nucleus. In addition, it is suggested that endogenous urocortin 1 in this area, such as from the Edinger-Westphal nucleus, does not regulate ethanol preference in C57BL/6J mice.

AB - The midbrain-localized Edinger-Westphal nucleus is a major site of production of urocortin 1. Urocortin 1 is a neuropeptide related to corticotropin-releasing factor that has high affinity for corticotropin- releasing factor type-1 and corticotropin-releasing factor type-2 receptors. In several mouse models, the amount of urocortin 1 neurons within the Edinger-Westphal nucleus is positively associated with ethanol preference. Central administration of urocortin 1 exerts potent anorectic actions, and implicates endogenous urocortin 1 in the regulation of food intake. It is possible that brain areas such as the dorsal raphe, which receives urocortin 1 from the Edinger-Westphal nucleus and highly expresses corticotropin-releasing factor type-2 receptors, mediate the actions of urocortin 1 on feeding and ethanol preference. In this study the amount of food, water and ethanol consumed over the dark cycle by ethanol-preferring C57BL/6J mice was measured after injection of artificial cerebrospinal fluid vehicle, urocortin 1, corticotropin-releasing factor and the corticotropin-releasing factor type-2 receptor-selective antagonist antisauvagine-30 onto the dorsal raphe. Compared with vehicle, corticotropin-releasing factor and antisauvagine-30, urocortin 1 induced a significant reduction in the amount of food consumed overnight. Also, compared with antisauvagine-30 treatment, urocortin 1 significantly reduced the amount of weight gained during this time. Urocortin 1 also significantly reduced the total amount of fluid consumed, but did not alter ethanol preference, which was high during all treatments. These results suggest that the dorsal raphe is a neuroanatomical substrate of urocortin 1-induced reductions in feeding, possibly through modulation of serotonergic activity from this nucleus. In addition, it is suggested that endogenous urocortin 1 in this area, such as from the Edinger-Westphal nucleus, does not regulate ethanol preference in C57BL/6J mice.

KW - Alcohol

KW - Corticotropin

KW - CRF

KW - Depression

KW - Energy balance

KW - Serotonin

UR - http://www.scopus.com/inward/record.url?scp=31144465202&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=31144465202&partnerID=8YFLogxK

U2 - 10.1016/j.neuroscience.2005.10.021

DO - 10.1016/j.neuroscience.2005.10.021

M3 - Article

C2 - 16338088

AN - SCOPUS:31144465202

VL - 137

SP - 1439

EP - 1445

JO - Neuroscience

JF - Neuroscience

SN - 0306-4522

IS - 4

ER -