Unobtrusive assessment of walking speed in the home using inexpensive PIR sensors

Tamara L. Hayes, Stuart Hagler, Daniel Austin, Jeffrey Kaye, Michael (Misha) Pavel

Research output: Chapter in Book/Report/Conference proceedingConference contribution

33 Scopus citations

Abstract

Walking speed and activity are important measures of functional ability in the elderly. Our earlier studies have suggested that continuous monitoring may allow us to detect changes in walking speed that are also predictive of cognitive changes. We evaluated the use of passive infrared (PIR) sensors for measuring walking speed in the home on an ongoing basis. In comparisons with gait mat estimates (ground truth) and the results of a timed walk test (the clinical gold standard) in 18 subjects, we found that the clinical measure overestimated typical walking speed, and the PIR sensor estimations of walking speed were highly correlated to actual gait speed. Examination of in-home walking patterns from more than 100,000 walking speed samples for these subjects suggested that we can accurately assess walking speed in the home. We discuss the potential of this approach for continuous assessment.

Original languageEnglish (US)
Title of host publicationProceedings of the 31st Annual International Conference of the IEEE Engineering in Medicine and Biology Society
Subtitle of host publicationEngineering the Future of Biomedicine, EMBC 2009
PublisherIEEE Computer Society
Pages7248-7251
Number of pages4
ISBN (Print)9781424432967
DOIs
StatePublished - 2009
Event31st Annual International Conference of the IEEE Engineering in Medicine and Biology Society: Engineering the Future of Biomedicine, EMBC 2009 - Minneapolis, MN, United States
Duration: Sep 2 2009Sep 6 2009

Publication series

NameProceedings of the 31st Annual International Conference of the IEEE Engineering in Medicine and Biology Society: Engineering the Future of Biomedicine, EMBC 2009

Other

Other31st Annual International Conference of the IEEE Engineering in Medicine and Biology Society: Engineering the Future of Biomedicine, EMBC 2009
CountryUnited States
CityMinneapolis, MN
Period9/2/099/6/09

ASJC Scopus subject areas

  • Cell Biology
  • Developmental Biology
  • Biomedical Engineering
  • Medicine(all)

Fingerprint Dive into the research topics of 'Unobtrusive assessment of walking speed in the home using inexpensive PIR sensors'. Together they form a unique fingerprint.

  • Cite this

    Hayes, T. L., Hagler, S., Austin, D., Kaye, J., & Pavel, M. M. (2009). Unobtrusive assessment of walking speed in the home using inexpensive PIR sensors. In Proceedings of the 31st Annual International Conference of the IEEE Engineering in Medicine and Biology Society: Engineering the Future of Biomedicine, EMBC 2009 (pp. 7248-7251). [5334746] (Proceedings of the 31st Annual International Conference of the IEEE Engineering in Medicine and Biology Society: Engineering the Future of Biomedicine, EMBC 2009). IEEE Computer Society. https://doi.org/10.1109/IEMBS.2009.5334746