Ultrafast neuronal imaging of dopamine dynamics with designed genetically encoded sensors

Tommaso Patriarchi, Jounhong Ryan Cho, Katharina Merten, Mark W. Howe, Aaron Marley, Wei-Hong Xiong, Robert W. Folk, Gerard Joey Broussard, Ruqiang Liang, Min Jee Jang, Haining Zhong, Daniel Dombeck, Mark von Zastrow, Axel Nimmerjahn, Viviana Gradinaru, John Williams, Lin Tian

Research output: Contribution to journalArticle

64 Citations (Scopus)

Abstract

Neuromodulatory systems exert profound influences on brain function. Understanding how these systems modify the operating mode of target circuits requires measuring spatiotemporally precise neuromodulator release. We developed dLight1, an intensity-based genetically encoded dopamine indicator, to enable optical recording of dopamine dynamics with high spatiotemporal resolution in behaving mice. We demonstrated the utility of dLight1 by imaging dopamine dynamics simultaneously with pharmacological manipulation, electrophysiological or optogenetic stimulation, and calcium imaging of local neuronal activity. dLight1 enabled chronic tracking of learning-induced changes in millisecond dopamine transients in striatum. Further, we used dLight1 to image spatially distinct, functionally heterogeneous dopamine transients relevant to learning and motor control in cortex. We also validated our sensor design platform for developing norepinephrine, serotonin, melatonin, and opioid neuropeptide indicators.

Original languageEnglish (US)
Pages (from-to)1-14
Number of pages14
JournalScience
DOIs
StateAccepted/In press - May 31 2018

Fingerprint

Dopamine
Optogenetics
Learning
Melatonin
Neuropeptides
Opioid Analgesics
Neurotransmitter Agents
Serotonin
Norepinephrine
Pharmacology
Calcium
Brain

ASJC Scopus subject areas

  • General

Cite this

Patriarchi, T., Cho, J. R., Merten, K., Howe, M. W., Marley, A., Xiong, W-H., ... Tian, L. (Accepted/In press). Ultrafast neuronal imaging of dopamine dynamics with designed genetically encoded sensors. Science, 1-14. https://doi.org/10.1126/science.aat4422

Ultrafast neuronal imaging of dopamine dynamics with designed genetically encoded sensors. / Patriarchi, Tommaso; Cho, Jounhong Ryan; Merten, Katharina; Howe, Mark W.; Marley, Aaron; Xiong, Wei-Hong; Folk, Robert W.; Broussard, Gerard Joey; Liang, Ruqiang; Jang, Min Jee; Zhong, Haining; Dombeck, Daniel; von Zastrow, Mark; Nimmerjahn, Axel; Gradinaru, Viviana; Williams, John; Tian, Lin.

In: Science, 31.05.2018, p. 1-14.

Research output: Contribution to journalArticle

Patriarchi, T, Cho, JR, Merten, K, Howe, MW, Marley, A, Xiong, W-H, Folk, RW, Broussard, GJ, Liang, R, Jang, MJ, Zhong, H, Dombeck, D, von Zastrow, M, Nimmerjahn, A, Gradinaru, V, Williams, J & Tian, L 2018, 'Ultrafast neuronal imaging of dopamine dynamics with designed genetically encoded sensors', Science, pp. 1-14. https://doi.org/10.1126/science.aat4422
Patriarchi, Tommaso ; Cho, Jounhong Ryan ; Merten, Katharina ; Howe, Mark W. ; Marley, Aaron ; Xiong, Wei-Hong ; Folk, Robert W. ; Broussard, Gerard Joey ; Liang, Ruqiang ; Jang, Min Jee ; Zhong, Haining ; Dombeck, Daniel ; von Zastrow, Mark ; Nimmerjahn, Axel ; Gradinaru, Viviana ; Williams, John ; Tian, Lin. / Ultrafast neuronal imaging of dopamine dynamics with designed genetically encoded sensors. In: Science. 2018 ; pp. 1-14.
@article{1667b11feb804c3e8c6d918d03e31301,
title = "Ultrafast neuronal imaging of dopamine dynamics with designed genetically encoded sensors",
abstract = "Neuromodulatory systems exert profound influences on brain function. Understanding how these systems modify the operating mode of target circuits requires measuring spatiotemporally precise neuromodulator release. We developed dLight1, an intensity-based genetically encoded dopamine indicator, to enable optical recording of dopamine dynamics with high spatiotemporal resolution in behaving mice. We demonstrated the utility of dLight1 by imaging dopamine dynamics simultaneously with pharmacological manipulation, electrophysiological or optogenetic stimulation, and calcium imaging of local neuronal activity. dLight1 enabled chronic tracking of learning-induced changes in millisecond dopamine transients in striatum. Further, we used dLight1 to image spatially distinct, functionally heterogeneous dopamine transients relevant to learning and motor control in cortex. We also validated our sensor design platform for developing norepinephrine, serotonin, melatonin, and opioid neuropeptide indicators.",
author = "Tommaso Patriarchi and Cho, {Jounhong Ryan} and Katharina Merten and Howe, {Mark W.} and Aaron Marley and Wei-Hong Xiong and Folk, {Robert W.} and Broussard, {Gerard Joey} and Ruqiang Liang and Jang, {Min Jee} and Haining Zhong and Daniel Dombeck and {von Zastrow}, Mark and Axel Nimmerjahn and Viviana Gradinaru and John Williams and Lin Tian",
year = "2018",
month = "5",
day = "31",
doi = "10.1126/science.aat4422",
language = "English (US)",
pages = "1--14",
journal = "Science",
issn = "0036-8075",
publisher = "American Association for the Advancement of Science",

}

TY - JOUR

T1 - Ultrafast neuronal imaging of dopamine dynamics with designed genetically encoded sensors

AU - Patriarchi, Tommaso

AU - Cho, Jounhong Ryan

AU - Merten, Katharina

AU - Howe, Mark W.

AU - Marley, Aaron

AU - Xiong, Wei-Hong

AU - Folk, Robert W.

AU - Broussard, Gerard Joey

AU - Liang, Ruqiang

AU - Jang, Min Jee

AU - Zhong, Haining

AU - Dombeck, Daniel

AU - von Zastrow, Mark

AU - Nimmerjahn, Axel

AU - Gradinaru, Viviana

AU - Williams, John

AU - Tian, Lin

PY - 2018/5/31

Y1 - 2018/5/31

N2 - Neuromodulatory systems exert profound influences on brain function. Understanding how these systems modify the operating mode of target circuits requires measuring spatiotemporally precise neuromodulator release. We developed dLight1, an intensity-based genetically encoded dopamine indicator, to enable optical recording of dopamine dynamics with high spatiotemporal resolution in behaving mice. We demonstrated the utility of dLight1 by imaging dopamine dynamics simultaneously with pharmacological manipulation, electrophysiological or optogenetic stimulation, and calcium imaging of local neuronal activity. dLight1 enabled chronic tracking of learning-induced changes in millisecond dopamine transients in striatum. Further, we used dLight1 to image spatially distinct, functionally heterogeneous dopamine transients relevant to learning and motor control in cortex. We also validated our sensor design platform for developing norepinephrine, serotonin, melatonin, and opioid neuropeptide indicators.

AB - Neuromodulatory systems exert profound influences on brain function. Understanding how these systems modify the operating mode of target circuits requires measuring spatiotemporally precise neuromodulator release. We developed dLight1, an intensity-based genetically encoded dopamine indicator, to enable optical recording of dopamine dynamics with high spatiotemporal resolution in behaving mice. We demonstrated the utility of dLight1 by imaging dopamine dynamics simultaneously with pharmacological manipulation, electrophysiological or optogenetic stimulation, and calcium imaging of local neuronal activity. dLight1 enabled chronic tracking of learning-induced changes in millisecond dopamine transients in striatum. Further, we used dLight1 to image spatially distinct, functionally heterogeneous dopamine transients relevant to learning and motor control in cortex. We also validated our sensor design platform for developing norepinephrine, serotonin, melatonin, and opioid neuropeptide indicators.

UR - http://www.scopus.com/inward/record.url?scp=85048126435&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=85048126435&partnerID=8YFLogxK

U2 - 10.1126/science.aat4422

DO - 10.1126/science.aat4422

M3 - Article

C2 - 29853555

AN - SCOPUS:85048126435

SP - 1

EP - 14

JO - Science

JF - Science

SN - 0036-8075

ER -