Two-tone suppression of inner hair cell and basilar membrane responses in the guinea pig

Alfred Nuttall, D. F. Dolan

Research output: Contribution to journalArticle

43 Citations (Scopus)

Abstract

Recordings of receptor potentials from inner hair cells (IHCs) and the basilar membrane (BM) motion were made in pigmented guinea pigs. The acoustic stimuli were single tones near best frequency (BF) and two-tone complexes. Single tone input/output (I/O) functions had a saturating growth for the magnitude and their phase shifts were strongly dependent on the tone frequency relative to BF. For IHCs, a BF tone stimulus produced no phase shift in the ac receptor potential response. Phase lag or lead occurred for tones below or above BF, respectively. BM velocity I/O functions were not as compressively saturating as IHC as I/O curves. BM phase shifts (in relation to BF) were similar to those of the IHCs. Two-tone suppression was observed in both IHC and BM response measures. Suppressor tones on the low-frequency side of BF produced complex suppression results, which were inconsistent with a simple attenuation model for suppression. The growth of suppression was faster than the attenuation from equivalent level reductions of the probe tone, and phase shifts were phase lead. Depending upon experimental conditions, phase change with suppression may be in the opposite direction from phase change observed from pure attenuation of the probe tone. High- frequency suppressors (relative to BF) are consistent with an attenuation model of suppression for the IHCs of the current study. High side suppression of basilar membrane velocity, however, differed from the IHCs in a systematic way. The phase change caused by suppression of BM velocity was always smaller than that of an equivalent reduction in the probe tone level.

Original languageEnglish (US)
Pages (from-to)390-400
Number of pages11
JournalJournal of the Acoustical Society of America
Volume93
Issue number1
StatePublished - 1993
Externally publishedYes

Fingerprint

guinea pigs
hair
retarding
membranes
phase shift
attenuation
suppressors
stimuli
probes
output
Cells
Membrane
Pig
Guinea
Suppression
cells
time lag
recording
low frequencies
acoustics

ASJC Scopus subject areas

  • Acoustics and Ultrasonics

Cite this

Two-tone suppression of inner hair cell and basilar membrane responses in the guinea pig. / Nuttall, Alfred; Dolan, D. F.

In: Journal of the Acoustical Society of America, Vol. 93, No. 1, 1993, p. 390-400.

Research output: Contribution to journalArticle

@article{396dae87e3bb4800a8555c746a9238d8,
title = "Two-tone suppression of inner hair cell and basilar membrane responses in the guinea pig",
abstract = "Recordings of receptor potentials from inner hair cells (IHCs) and the basilar membrane (BM) motion were made in pigmented guinea pigs. The acoustic stimuli were single tones near best frequency (BF) and two-tone complexes. Single tone input/output (I/O) functions had a saturating growth for the magnitude and their phase shifts were strongly dependent on the tone frequency relative to BF. For IHCs, a BF tone stimulus produced no phase shift in the ac receptor potential response. Phase lag or lead occurred for tones below or above BF, respectively. BM velocity I/O functions were not as compressively saturating as IHC as I/O curves. BM phase shifts (in relation to BF) were similar to those of the IHCs. Two-tone suppression was observed in both IHC and BM response measures. Suppressor tones on the low-frequency side of BF produced complex suppression results, which were inconsistent with a simple attenuation model for suppression. The growth of suppression was faster than the attenuation from equivalent level reductions of the probe tone, and phase shifts were phase lead. Depending upon experimental conditions, phase change with suppression may be in the opposite direction from phase change observed from pure attenuation of the probe tone. High- frequency suppressors (relative to BF) are consistent with an attenuation model of suppression for the IHCs of the current study. High side suppression of basilar membrane velocity, however, differed from the IHCs in a systematic way. The phase change caused by suppression of BM velocity was always smaller than that of an equivalent reduction in the probe tone level.",
author = "Alfred Nuttall and Dolan, {D. F.}",
year = "1993",
language = "English (US)",
volume = "93",
pages = "390--400",
journal = "Journal of the Acoustical Society of America",
issn = "0001-4966",
publisher = "Acoustical Society of America",
number = "1",

}

TY - JOUR

T1 - Two-tone suppression of inner hair cell and basilar membrane responses in the guinea pig

AU - Nuttall, Alfred

AU - Dolan, D. F.

PY - 1993

Y1 - 1993

N2 - Recordings of receptor potentials from inner hair cells (IHCs) and the basilar membrane (BM) motion were made in pigmented guinea pigs. The acoustic stimuli were single tones near best frequency (BF) and two-tone complexes. Single tone input/output (I/O) functions had a saturating growth for the magnitude and their phase shifts were strongly dependent on the tone frequency relative to BF. For IHCs, a BF tone stimulus produced no phase shift in the ac receptor potential response. Phase lag or lead occurred for tones below or above BF, respectively. BM velocity I/O functions were not as compressively saturating as IHC as I/O curves. BM phase shifts (in relation to BF) were similar to those of the IHCs. Two-tone suppression was observed in both IHC and BM response measures. Suppressor tones on the low-frequency side of BF produced complex suppression results, which were inconsistent with a simple attenuation model for suppression. The growth of suppression was faster than the attenuation from equivalent level reductions of the probe tone, and phase shifts were phase lead. Depending upon experimental conditions, phase change with suppression may be in the opposite direction from phase change observed from pure attenuation of the probe tone. High- frequency suppressors (relative to BF) are consistent with an attenuation model of suppression for the IHCs of the current study. High side suppression of basilar membrane velocity, however, differed from the IHCs in a systematic way. The phase change caused by suppression of BM velocity was always smaller than that of an equivalent reduction in the probe tone level.

AB - Recordings of receptor potentials from inner hair cells (IHCs) and the basilar membrane (BM) motion were made in pigmented guinea pigs. The acoustic stimuli were single tones near best frequency (BF) and two-tone complexes. Single tone input/output (I/O) functions had a saturating growth for the magnitude and their phase shifts were strongly dependent on the tone frequency relative to BF. For IHCs, a BF tone stimulus produced no phase shift in the ac receptor potential response. Phase lag or lead occurred for tones below or above BF, respectively. BM velocity I/O functions were not as compressively saturating as IHC as I/O curves. BM phase shifts (in relation to BF) were similar to those of the IHCs. Two-tone suppression was observed in both IHC and BM response measures. Suppressor tones on the low-frequency side of BF produced complex suppression results, which were inconsistent with a simple attenuation model for suppression. The growth of suppression was faster than the attenuation from equivalent level reductions of the probe tone, and phase shifts were phase lead. Depending upon experimental conditions, phase change with suppression may be in the opposite direction from phase change observed from pure attenuation of the probe tone. High- frequency suppressors (relative to BF) are consistent with an attenuation model of suppression for the IHCs of the current study. High side suppression of basilar membrane velocity, however, differed from the IHCs in a systematic way. The phase change caused by suppression of BM velocity was always smaller than that of an equivalent reduction in the probe tone level.

UR - http://www.scopus.com/inward/record.url?scp=0027403715&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=0027403715&partnerID=8YFLogxK

M3 - Article

C2 - 8423256

AN - SCOPUS:0027403715

VL - 93

SP - 390

EP - 400

JO - Journal of the Acoustical Society of America

JF - Journal of the Acoustical Society of America

SN - 0001-4966

IS - 1

ER -