Time-dependent influence of sensorimotor set on automatic responses in perturbed stance

Raymond K Y Chong, Fay Horak, Marjorie H. Woollacott

Research output: Contribution to journalArticle

37 Citations (Scopus)

Abstract

These experiments tested the hypothesis that the ability to change sensorimotor set quickly for automatic responses depends on the time interval between successive surface perturbations. Sensorimotor set refers to the influence of prior experience or context on the state of the sensorimotor system. Sensorimotor set for postural responses was influenced by first giving subjects a block of identical backward translations of the support surface, causing forward sway and automatic gastrocnemius responses. The ability to change set quickly was inferred by measuring the suppression of the stretched antagonist gastrocnemius responses to toes-up rotations causing backward sway, following the translations. Responses were examined under short (10-14 s) and long (19-24 s) inter-trial intervals in young healthy subjects. The results showed that subjects in the long-interval group changed set immediately by suppressing gastrocnemius to 51% of translation responses within the first rotation and continued to suppress them over succeeding rotations. In contrast, subjects in the short-interval group did not change set immediately, but required two or more rotations to suppress gastrocnemius responses. By the last rotation, the short-interval group suppressed gastrocnemius responses to 33%, similar to the long-interval group of 29%. Associated surface plantarflexor torque resulting from these responses showed similar results. When rotation and translation perturbations alternated, however, the short-interval group was not able to suppress gastrocnemius responses to rotations as much as the long-interval group, although they did suppress more than in the first rotation trial after a series of translations. Set for automatic responses appears to linger, from one trial to the next. Specifically, sensorimotor set is more difficult to change when surface perturbations are given in close succession, making it appear as if set has become progressively stronger. A strong set does not mean that responses become larger over consecutive trials. Rather, it is inferred by the extent of difficulty in changing a response when it is appropriate to do so. These results suggest that the ability to change sensorimotor set quickly is sensitive to whether the change is required after a long or a short series of a prior different response, which in turn depends on the time interval between successive trials. Different rate of gastrocnemius suppression to toes-up rotation of the support surface have been reported in previous studies. This may be partially explained by different inter-trial time intervals demonstrated in this study.

Original languageEnglish (US)
Pages (from-to)513-519
Number of pages7
JournalExperimental Brain Research
Volume124
Issue number4
DOIs
StatePublished - 1999

Fingerprint

Toes
Torque
Healthy Volunteers

Keywords

  • Automatic responses
  • Balance
  • Balance control
  • Central set
  • Postural control
  • Posture
  • Sensorimotor set
  • Set

ASJC Scopus subject areas

  • Neuroscience(all)

Cite this

Time-dependent influence of sensorimotor set on automatic responses in perturbed stance. / Chong, Raymond K Y; Horak, Fay; Woollacott, Marjorie H.

In: Experimental Brain Research, Vol. 124, No. 4, 1999, p. 513-519.

Research output: Contribution to journalArticle

Chong, Raymond K Y ; Horak, Fay ; Woollacott, Marjorie H. / Time-dependent influence of sensorimotor set on automatic responses in perturbed stance. In: Experimental Brain Research. 1999 ; Vol. 124, No. 4. pp. 513-519.
@article{3492d5586a5a4e6f8072df8650ec7280,
title = "Time-dependent influence of sensorimotor set on automatic responses in perturbed stance",
abstract = "These experiments tested the hypothesis that the ability to change sensorimotor set quickly for automatic responses depends on the time interval between successive surface perturbations. Sensorimotor set refers to the influence of prior experience or context on the state of the sensorimotor system. Sensorimotor set for postural responses was influenced by first giving subjects a block of identical backward translations of the support surface, causing forward sway and automatic gastrocnemius responses. The ability to change set quickly was inferred by measuring the suppression of the stretched antagonist gastrocnemius responses to toes-up rotations causing backward sway, following the translations. Responses were examined under short (10-14 s) and long (19-24 s) inter-trial intervals in young healthy subjects. The results showed that subjects in the long-interval group changed set immediately by suppressing gastrocnemius to 51{\%} of translation responses within the first rotation and continued to suppress them over succeeding rotations. In contrast, subjects in the short-interval group did not change set immediately, but required two or more rotations to suppress gastrocnemius responses. By the last rotation, the short-interval group suppressed gastrocnemius responses to 33{\%}, similar to the long-interval group of 29{\%}. Associated surface plantarflexor torque resulting from these responses showed similar results. When rotation and translation perturbations alternated, however, the short-interval group was not able to suppress gastrocnemius responses to rotations as much as the long-interval group, although they did suppress more than in the first rotation trial after a series of translations. Set for automatic responses appears to linger, from one trial to the next. Specifically, sensorimotor set is more difficult to change when surface perturbations are given in close succession, making it appear as if set has become progressively stronger. A strong set does not mean that responses become larger over consecutive trials. Rather, it is inferred by the extent of difficulty in changing a response when it is appropriate to do so. These results suggest that the ability to change sensorimotor set quickly is sensitive to whether the change is required after a long or a short series of a prior different response, which in turn depends on the time interval between successive trials. Different rate of gastrocnemius suppression to toes-up rotation of the support surface have been reported in previous studies. This may be partially explained by different inter-trial time intervals demonstrated in this study.",
keywords = "Automatic responses, Balance, Balance control, Central set, Postural control, Posture, Sensorimotor set, Set",
author = "Chong, {Raymond K Y} and Fay Horak and Woollacott, {Marjorie H.}",
year = "1999",
doi = "10.1007/s002210050647",
language = "English (US)",
volume = "124",
pages = "513--519",
journal = "Experimental Brain Research",
issn = "0014-4819",
publisher = "Springer Verlag",
number = "4",

}

TY - JOUR

T1 - Time-dependent influence of sensorimotor set on automatic responses in perturbed stance

AU - Chong, Raymond K Y

AU - Horak, Fay

AU - Woollacott, Marjorie H.

PY - 1999

Y1 - 1999

N2 - These experiments tested the hypothesis that the ability to change sensorimotor set quickly for automatic responses depends on the time interval between successive surface perturbations. Sensorimotor set refers to the influence of prior experience or context on the state of the sensorimotor system. Sensorimotor set for postural responses was influenced by first giving subjects a block of identical backward translations of the support surface, causing forward sway and automatic gastrocnemius responses. The ability to change set quickly was inferred by measuring the suppression of the stretched antagonist gastrocnemius responses to toes-up rotations causing backward sway, following the translations. Responses were examined under short (10-14 s) and long (19-24 s) inter-trial intervals in young healthy subjects. The results showed that subjects in the long-interval group changed set immediately by suppressing gastrocnemius to 51% of translation responses within the first rotation and continued to suppress them over succeeding rotations. In contrast, subjects in the short-interval group did not change set immediately, but required two or more rotations to suppress gastrocnemius responses. By the last rotation, the short-interval group suppressed gastrocnemius responses to 33%, similar to the long-interval group of 29%. Associated surface plantarflexor torque resulting from these responses showed similar results. When rotation and translation perturbations alternated, however, the short-interval group was not able to suppress gastrocnemius responses to rotations as much as the long-interval group, although they did suppress more than in the first rotation trial after a series of translations. Set for automatic responses appears to linger, from one trial to the next. Specifically, sensorimotor set is more difficult to change when surface perturbations are given in close succession, making it appear as if set has become progressively stronger. A strong set does not mean that responses become larger over consecutive trials. Rather, it is inferred by the extent of difficulty in changing a response when it is appropriate to do so. These results suggest that the ability to change sensorimotor set quickly is sensitive to whether the change is required after a long or a short series of a prior different response, which in turn depends on the time interval between successive trials. Different rate of gastrocnemius suppression to toes-up rotation of the support surface have been reported in previous studies. This may be partially explained by different inter-trial time intervals demonstrated in this study.

AB - These experiments tested the hypothesis that the ability to change sensorimotor set quickly for automatic responses depends on the time interval between successive surface perturbations. Sensorimotor set refers to the influence of prior experience or context on the state of the sensorimotor system. Sensorimotor set for postural responses was influenced by first giving subjects a block of identical backward translations of the support surface, causing forward sway and automatic gastrocnemius responses. The ability to change set quickly was inferred by measuring the suppression of the stretched antagonist gastrocnemius responses to toes-up rotations causing backward sway, following the translations. Responses were examined under short (10-14 s) and long (19-24 s) inter-trial intervals in young healthy subjects. The results showed that subjects in the long-interval group changed set immediately by suppressing gastrocnemius to 51% of translation responses within the first rotation and continued to suppress them over succeeding rotations. In contrast, subjects in the short-interval group did not change set immediately, but required two or more rotations to suppress gastrocnemius responses. By the last rotation, the short-interval group suppressed gastrocnemius responses to 33%, similar to the long-interval group of 29%. Associated surface plantarflexor torque resulting from these responses showed similar results. When rotation and translation perturbations alternated, however, the short-interval group was not able to suppress gastrocnemius responses to rotations as much as the long-interval group, although they did suppress more than in the first rotation trial after a series of translations. Set for automatic responses appears to linger, from one trial to the next. Specifically, sensorimotor set is more difficult to change when surface perturbations are given in close succession, making it appear as if set has become progressively stronger. A strong set does not mean that responses become larger over consecutive trials. Rather, it is inferred by the extent of difficulty in changing a response when it is appropriate to do so. These results suggest that the ability to change sensorimotor set quickly is sensitive to whether the change is required after a long or a short series of a prior different response, which in turn depends on the time interval between successive trials. Different rate of gastrocnemius suppression to toes-up rotation of the support surface have been reported in previous studies. This may be partially explained by different inter-trial time intervals demonstrated in this study.

KW - Automatic responses

KW - Balance

KW - Balance control

KW - Central set

KW - Postural control

KW - Posture

KW - Sensorimotor set

KW - Set

UR - http://www.scopus.com/inward/record.url?scp=0033039192&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=0033039192&partnerID=8YFLogxK

U2 - 10.1007/s002210050647

DO - 10.1007/s002210050647

M3 - Article

VL - 124

SP - 513

EP - 519

JO - Experimental Brain Research

JF - Experimental Brain Research

SN - 0014-4819

IS - 4

ER -