Three-dimensional reconstruction of color Doppler flow convergence regions and regurgitant jets: An in vitro quantitative study

Takahiro Shiota, Brian Sinclair, Masahiro Ishii, Xiaodong Zhou, Ge Shuping, Dag E. Teien, Morteza Gharib, David J. Sahn

Research output: Contribution to journalArticle

67 Scopus citations

Abstract

Objectives. This study sought to investigate the applicability of a current implementation of a three-dimensional echocardiographic reconstruction method for color Doppler flow convergence and regurgitant jet imaging. Background. Evaluation of regurgitant flow events, such as flow convergences or regurgitant jets, using two-dimensional imaging ultrasound color flow Doppler systems may not be robust enough to characterize these spatially complex events. Methods. We studied two in vitro models using steady flow to optimize results. In the first constant-flow model, two different orifices were each mounted to produce flow convergences and free jets-a circular orifice and a rectangular orifice with orifice area of 0.24 cm2. In another flow model, steady flows through a circular orifice were directed toward a curved surrounding wall to produce wall adherent jets. Video composite data of color Doppler flow images from both free jet and wall jet models were reconstructed and analyzed after computer-controlled 180° rotational acquisition using a TomTec computer. Results. For the free jet model there was an excellent relation between actual flow rates and three-dimensional regurgitant jet volumes for both circular and rectangular orifices (r = 0.99 and r = 0.98, respectively). However, the rectangular orifice produced larger jet volumes than the circular orifice, even at the same flow rates (p < 0.0001). Calculated flow rates by the hemispheric model using one axial measurement of the flow convergence isovelocity surface from two-dimensional color flow images underestimated actual flow rate by 35% for the circular orifice and by 44% for the rectangular orifice, whereas a hemielliptic method implemented using three axial measurements of the flow convergence zone derived using three-dimensional reconstruction correlated well with and underestimated actual flow rate to a lesser degree (22% for the circular orifice, 32% for the rectangular orifice). In the wall jet model, the jets were flattened against and spread along the wall and had reduced regurgitant jet volumes compared with free jets (p < 0.01). Conclusions. Three-dimensional reconstruction of flow imaged by color Doppler may add quantitative spatial information to aid computation methods that have been used for evaluating valvular regurgitation, especially where they relate to complex geometric flow events.

Original languageEnglish (US)
Pages (from-to)1511-1518
Number of pages8
JournalJournal of the American College of Cardiology
Volume27
Issue number6
DOIs
StatePublished - May 1996

ASJC Scopus subject areas

  • Cardiology and Cardiovascular Medicine

Fingerprint Dive into the research topics of 'Three-dimensional reconstruction of color Doppler flow convergence regions and regurgitant jets: An in vitro quantitative study'. Together they form a unique fingerprint.

  • Cite this