Three-dimensional optoelectronic stacked processor by use of free-space optical interconnection and three-dimensional VLSI chip stacks

Guoqiang Li, Dawei Huang, Emel Yuceturk, Philippe J. Marchand, Sadik C. Esener, Volkan H. Ozguz, Yue Liu

Research output: Contribution to journalArticlepeer-review

26 Scopus citations


We present a demonstration system under the three-dimensional (3D) optoelectronic stacked processor consortium. The processor combines the advantages of optics in global, high-density, high-speed parallel interconnections with the density and computational power of 3D chip stacks. In particular, a compact and scalable optoelectronic switching system with a high bandwidth is designed. The system consists of three silicon chip stacks, each integrated with a single vertical-cavity-surface-emitting-laser– metal-semiconductor-metal detector array and an optical interconnection module. Any input signal at one end stack can be switched through the central crossbar stack to any output channel on the opposite end stack. The crossbar bandwidth is designed to be 256 Gb/s. For the free-space optical interconnection, a novel folded hybrid micro–macro optical system with a concave reflection mirror has been designed. The optics module can provide a high resolution, a large field of view, a high link efficiency, and low optical cross talk. It is also symmetric and modular. Off–the–shelf macro-optical components are used. The concave reflection mirror can significantly improve the image quality and tolerate a large misalignment of the optical components, and it can also compensate for the lateral shift of the chip stacks. Scaling of the macrolens can be used to adjust the interconnection length between the chip stacks or make the system more compact. The components are easy to align, and only passive alignment is required. Optics and electronics are separated until the final assembly step, and the optomechanic module can be removed and replaced. By use of 3D chip stacks, commercially available optical components, and simple passive packaging techniques, it is possible to achieve a high-performance optoelectronic switching system.

Original languageEnglish (US)
Pages (from-to)348-360
Number of pages13
JournalApplied Optics
Issue number2
StatePublished - Jan 10 2002
Externally publishedYes

ASJC Scopus subject areas

  • Atomic and Molecular Physics, and Optics
  • Engineering (miscellaneous)
  • Electrical and Electronic Engineering


Dive into the research topics of 'Three-dimensional optoelectronic stacked processor by use of free-space optical interconnection and three-dimensional VLSI chip stacks'. Together they form a unique fingerprint.

Cite this