The time course of dopamine transmission in the ventral tegmental area

Christopher P. Ford, Paul E.M. Phillips, John T. Williams

Research output: Contribution to journalArticle

43 Scopus citations

Abstract

Synaptic transmission mediated by G-protein coupled receptors (GPCR) is not generally thought to be point-to-point. To determine the extent over which dopamine signals in the midbrain, the present study examined the concentration and time course of dopamine that underlies a D2-receptor IPSC (D 2-IPSC) in the ventral tegmental area. Extracellular dopamine was measured electrochemically while simultaneously recording D2-IPSCs. The presence of dopamine was brief relative to the IPSC, suggesting that G-protein dependent potassium channel activation determined the IPSC time course. The activation kinetics of D2 receptor-dependent potassium current was studied using outside-out patch recordings with rapid application of dopamine. Dopamine applied at a minimum concentration of 10 μM for a maximum of 100 ms mimicked the IPSC. Higher concentrations applied for as little as 5 ms did not change the kinetics of the current. The results indicate that both the intrinsic kinetics of G-protein coupled receptor signaling and a rapidly rising high concentration of dopamine determine the time course of the IPSC. Thus, dopamine transmission in the midbrain is more localized then previously proposed.

Original languageEnglish (US)
Pages (from-to)13344-13352
Number of pages9
JournalJournal of Neuroscience
Volume29
Issue number42
DOIs
StatePublished - Oct 21 2009

    Fingerprint

ASJC Scopus subject areas

  • Neuroscience(all)

Cite this