The role of diffusion in the photoresponse of an extraretinal photoreceptor of Aplysia.

M. C. Andresen, A. M. Brown, S. Yasui

Research output: Contribution to journalArticle

9 Scopus citations

Abstract

1. Membrane currents produced by flashes and steps of light (photo‐current) were recorded from the ventral photoresponsive neurone of Aplysia californica. The effects of background illumination and changes in temperature were also examined. 2. The falling phase of the response wave form may be separated into two components with time constants of 10‐‐12 sec and 50 sec. 3. Background illumination reduced the response amplitude to light impulses without appreciably altering the response wave form. 4. Lowering the temperature greatly reduced the amplitude of the photo‐current with a Q10 of 2.91 (25‐‐15 degrees C) and greatly prolonged the duration of the response. 5. Because of the relatively large distance between the plasma membrane and the pigmented cytoplasmic lipochondria where light is absorbed, a diffusion‐based model with Ca as the internal‐transmitter (Andresen & Brown, 1979) was developed. 6. In this model diffusion of Ca2+ released from the lipochondria upon photon absorption is slowed by the reversible uptake of Ca2+ at cytoplasmic binding sites. Ca2+ interacts with sites at the plasma membrane to increase GK and Ca2+ levels are subsequently restored by irreversible uptake processes. Ca2+ release and its adsorption and desorption from the more numerous plasma membrane binding sites were assumed to be instantaneous with respect to the duration of the light‐evoked response. 7. The linearized model equations adequately predict the experimental response wave forms, the effects of temperature, and saturation of the steady‐state amplitude‐‐stimulus relationship. Aside from amplitude scaling, no curve‐fitting was used. 8. The model also gives realistic values for the cytoplasmic diffusion coefficient of Ca and the net rate of Ca efflux required to restore dark Ca activity.

Original languageEnglish (US)
Pages (from-to)283-301
Number of pages19
JournalThe Journal of Physiology
Volume287
Issue number1
DOIs
StatePublished - Feb 1 1979

ASJC Scopus subject areas

  • Physiology

Fingerprint Dive into the research topics of 'The role of diffusion in the photoresponse of an extraretinal photoreceptor of Aplysia.'. Together they form a unique fingerprint.

  • Cite this