The membrane glycoprotein of Friend spleen focus-forming virus

Evidence that the cell surface component is required for pathogenesis and that it binds to a receptor

J. P. Li, R. K. Bestwick, C. Spiro, David Kabat

Research output: Contribution to journalArticle

49 Citations (Scopus)

Abstract

The leukemogenic membrane glycoprotein of Friend spleen focus-forming virus (SFFV) has an apparent M(r) of 55,000 (gp55), is encoded by a recombinant env gene, and occurs on cell surfaces and in intracellular organelles. There is evidence that the amino-terminal region of gp55 forms a dualtropic-specific domain that is connected to the remainder of the glycoprotein by a proline-rich linker (C. Machida, R. Bestwick, B. Boswell, and D. Kabat, Virology 144:158-172, 1985). Using the colinear form of a cloned polycythemic strain of SFFV proviral DNA, were constructed seven in-phase env mutants by insertion of linkers and by a deletion. The mutagenized SFFVs were transfected into fibroblasts and were rescued by superinfection with a helper murine leukemia virus. Four of the mutants cause erythroblastosis. These include one with a 6-base-pair (bp) insert in the ecotropic-related sequence near the 3' end of the gene, two with a 12- or 18-bp insert in the region that encodes the proline-rich linker, and one with a 6-bp insert in the dualtropic-specific region. The other mutants (RI, Sm1, and Sm2) are nonpathogenic and contain lesions in dualtropic-specific sequences that are highly conserved among strains of SFFV. A pathogenic revertant (RI-rev) was isolated from one mouse that developed erythroblastosis 3 weeks after infection with RI. RI-rev contains a second-site env mutation that affects the same domain as the primary mutation does and that increases the size of the encoded glycoprotein. All pathogenic SFFVs encode glycoproteins that are expressed on cell surfaces, whereas the nonpathogenic glycoproteins are exclusively intracellular. The pathogenic SFFVs also specifically cause a weak interference to superinfection by dualtropic MuLVs. These results are compatible with the multidomain model for the structure of gp55 and suggest that processing of gp55 to plasma membranes is required for pathogenesis. The amino-terminal region of gp55 binds to dualtropic murine leukemia virus receptors, and this interaction is preserved in the SFFV mutants that cause erythroblastosis.

Original languageEnglish (US)
Pages (from-to)2782-2792
Number of pages11
JournalJournal of Virology
Volume61
Issue number9
StatePublished - 1987

Fingerprint

Spleen Focus-Forming Viruses
membrane glycoproteins
Membrane Glycoproteins
Cellular Structures
glycoproteins
spleen
pathogenesis
Murine leukemia virus
viruses
mutants
receptors
Glycoproteins
proline
Base Pairing
Murine Leukemia Viruses
Superinfection
cells
mutation
virology
DNA viruses

ASJC Scopus subject areas

  • Immunology

Cite this

The membrane glycoprotein of Friend spleen focus-forming virus : Evidence that the cell surface component is required for pathogenesis and that it binds to a receptor. / Li, J. P.; Bestwick, R. K.; Spiro, C.; Kabat, David.

In: Journal of Virology, Vol. 61, No. 9, 1987, p. 2782-2792.

Research output: Contribution to journalArticle

@article{a9c17155a95444be9df39eaac0449eda,
title = "The membrane glycoprotein of Friend spleen focus-forming virus: Evidence that the cell surface component is required for pathogenesis and that it binds to a receptor",
abstract = "The leukemogenic membrane glycoprotein of Friend spleen focus-forming virus (SFFV) has an apparent M(r) of 55,000 (gp55), is encoded by a recombinant env gene, and occurs on cell surfaces and in intracellular organelles. There is evidence that the amino-terminal region of gp55 forms a dualtropic-specific domain that is connected to the remainder of the glycoprotein by a proline-rich linker (C. Machida, R. Bestwick, B. Boswell, and D. Kabat, Virology 144:158-172, 1985). Using the colinear form of a cloned polycythemic strain of SFFV proviral DNA, were constructed seven in-phase env mutants by insertion of linkers and by a deletion. The mutagenized SFFVs were transfected into fibroblasts and were rescued by superinfection with a helper murine leukemia virus. Four of the mutants cause erythroblastosis. These include one with a 6-base-pair (bp) insert in the ecotropic-related sequence near the 3' end of the gene, two with a 12- or 18-bp insert in the region that encodes the proline-rich linker, and one with a 6-bp insert in the dualtropic-specific region. The other mutants (RI, Sm1, and Sm2) are nonpathogenic and contain lesions in dualtropic-specific sequences that are highly conserved among strains of SFFV. A pathogenic revertant (RI-rev) was isolated from one mouse that developed erythroblastosis 3 weeks after infection with RI. RI-rev contains a second-site env mutation that affects the same domain as the primary mutation does and that increases the size of the encoded glycoprotein. All pathogenic SFFVs encode glycoproteins that are expressed on cell surfaces, whereas the nonpathogenic glycoproteins are exclusively intracellular. The pathogenic SFFVs also specifically cause a weak interference to superinfection by dualtropic MuLVs. These results are compatible with the multidomain model for the structure of gp55 and suggest that processing of gp55 to plasma membranes is required for pathogenesis. The amino-terminal region of gp55 binds to dualtropic murine leukemia virus receptors, and this interaction is preserved in the SFFV mutants that cause erythroblastosis.",
author = "Li, {J. P.} and Bestwick, {R. K.} and C. Spiro and David Kabat",
year = "1987",
language = "English (US)",
volume = "61",
pages = "2782--2792",
journal = "Journal of Virology",
issn = "0022-538X",
publisher = "American Society for Microbiology",
number = "9",

}

TY - JOUR

T1 - The membrane glycoprotein of Friend spleen focus-forming virus

T2 - Evidence that the cell surface component is required for pathogenesis and that it binds to a receptor

AU - Li, J. P.

AU - Bestwick, R. K.

AU - Spiro, C.

AU - Kabat, David

PY - 1987

Y1 - 1987

N2 - The leukemogenic membrane glycoprotein of Friend spleen focus-forming virus (SFFV) has an apparent M(r) of 55,000 (gp55), is encoded by a recombinant env gene, and occurs on cell surfaces and in intracellular organelles. There is evidence that the amino-terminal region of gp55 forms a dualtropic-specific domain that is connected to the remainder of the glycoprotein by a proline-rich linker (C. Machida, R. Bestwick, B. Boswell, and D. Kabat, Virology 144:158-172, 1985). Using the colinear form of a cloned polycythemic strain of SFFV proviral DNA, were constructed seven in-phase env mutants by insertion of linkers and by a deletion. The mutagenized SFFVs were transfected into fibroblasts and were rescued by superinfection with a helper murine leukemia virus. Four of the mutants cause erythroblastosis. These include one with a 6-base-pair (bp) insert in the ecotropic-related sequence near the 3' end of the gene, two with a 12- or 18-bp insert in the region that encodes the proline-rich linker, and one with a 6-bp insert in the dualtropic-specific region. The other mutants (RI, Sm1, and Sm2) are nonpathogenic and contain lesions in dualtropic-specific sequences that are highly conserved among strains of SFFV. A pathogenic revertant (RI-rev) was isolated from one mouse that developed erythroblastosis 3 weeks after infection with RI. RI-rev contains a second-site env mutation that affects the same domain as the primary mutation does and that increases the size of the encoded glycoprotein. All pathogenic SFFVs encode glycoproteins that are expressed on cell surfaces, whereas the nonpathogenic glycoproteins are exclusively intracellular. The pathogenic SFFVs also specifically cause a weak interference to superinfection by dualtropic MuLVs. These results are compatible with the multidomain model for the structure of gp55 and suggest that processing of gp55 to plasma membranes is required for pathogenesis. The amino-terminal region of gp55 binds to dualtropic murine leukemia virus receptors, and this interaction is preserved in the SFFV mutants that cause erythroblastosis.

AB - The leukemogenic membrane glycoprotein of Friend spleen focus-forming virus (SFFV) has an apparent M(r) of 55,000 (gp55), is encoded by a recombinant env gene, and occurs on cell surfaces and in intracellular organelles. There is evidence that the amino-terminal region of gp55 forms a dualtropic-specific domain that is connected to the remainder of the glycoprotein by a proline-rich linker (C. Machida, R. Bestwick, B. Boswell, and D. Kabat, Virology 144:158-172, 1985). Using the colinear form of a cloned polycythemic strain of SFFV proviral DNA, were constructed seven in-phase env mutants by insertion of linkers and by a deletion. The mutagenized SFFVs were transfected into fibroblasts and were rescued by superinfection with a helper murine leukemia virus. Four of the mutants cause erythroblastosis. These include one with a 6-base-pair (bp) insert in the ecotropic-related sequence near the 3' end of the gene, two with a 12- or 18-bp insert in the region that encodes the proline-rich linker, and one with a 6-bp insert in the dualtropic-specific region. The other mutants (RI, Sm1, and Sm2) are nonpathogenic and contain lesions in dualtropic-specific sequences that are highly conserved among strains of SFFV. A pathogenic revertant (RI-rev) was isolated from one mouse that developed erythroblastosis 3 weeks after infection with RI. RI-rev contains a second-site env mutation that affects the same domain as the primary mutation does and that increases the size of the encoded glycoprotein. All pathogenic SFFVs encode glycoproteins that are expressed on cell surfaces, whereas the nonpathogenic glycoproteins are exclusively intracellular. The pathogenic SFFVs also specifically cause a weak interference to superinfection by dualtropic MuLVs. These results are compatible with the multidomain model for the structure of gp55 and suggest that processing of gp55 to plasma membranes is required for pathogenesis. The amino-terminal region of gp55 binds to dualtropic murine leukemia virus receptors, and this interaction is preserved in the SFFV mutants that cause erythroblastosis.

UR - http://www.scopus.com/inward/record.url?scp=0023199648&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=0023199648&partnerID=8YFLogxK

M3 - Article

VL - 61

SP - 2782

EP - 2792

JO - Journal of Virology

JF - Journal of Virology

SN - 0022-538X

IS - 9

ER -