The chimeric protein tyrosine kinase ETV6-NTRK3 requires both Ras-Erk1/2 and PI3-kinase-Akt signaling for fibroblast transformation

Cristina Tognon, Mathew Garnett, Elizabeth Kenward, Kevin Morrison, Poul H.B. Sorensen, R. Kay

Research output: Contribution to journalArticlepeer-review

87 Scopus citations

Abstract

There is increasing interest in the potential role of the NTRK family of neurotrophin receptors in human neoplasia. These receptor protein tyrosine kinases (PTKs) are well-known mediators of neuronal cell survival and differentiation, but altered NTRK signaling has also been implicated in mesenchymal, hematopoietic, and epithelial malignancies. We recently identified a novel gene fusion involving one of the neurotrophin receptor genes, NTRK3, in the pediatric solid tumor, congenital fibrosarcoma. In these tumors (and subsequently demonstrated in several other human malignancies), a t(12;15)(p13;q25) rearrangement fuses the 3′ portion of the ETV6 gene with exons encoding the PTK domain of NTRK3. The resulting ETV6-NTRK3 fusion protein functions as a chimeric PTK with potent transforming activity. However, previous studies failed to detect interactions between ETV6-NTRK3 and molecules known to link wildtype NTRK3 to its two major effector pathways, namely the Ras-Raf1-Mek1-Erk1/2 mitogenic pathway or the phosphatidylinositol 3′-kinase pathway leading to activation of the AKT survival factor. Therefore, it remains unknown whether ETV6-NTRK3 transformation involves altered NTRK3 signaling. We now report that ETV6-NTRK3 expression in NIH3T3 cells leads to constitutive activation of Mek1 and Akt, as well as to constitutively high expression of cyclin D1. ETV6-NTRK3-induced soft agar colony formation was almost completely abolished by inhibition of either the Ras-Raf1-Mek1-Erk1/2 or the phosphatidylinositol 3′-kinase-Akt pathway. Moreover, this inhibition dramatically reduced expression of cyclin D1. Our results indicate that ETV6-NTRK3 transformation involves a link between known NTRK3 signaling pathways and aberrant cell cycle progression and that Mek1 and Akt activation act synergistically to mediate these effects.

Original languageEnglish (US)
Pages (from-to)8909-8916
Number of pages8
JournalCancer Research
Volume61
Issue number24
StatePublished - Dec 15 2001
Externally publishedYes

ASJC Scopus subject areas

  • Oncology
  • Cancer Research

Fingerprint

Dive into the research topics of 'The chimeric protein tyrosine kinase ETV6-NTRK3 requires both Ras-Erk1/2 and PI3-kinase-Akt signaling for fibroblast transformation'. Together they form a unique fingerprint.

Cite this