@article{e64f4ada3cca472fb70df8149eae7c9f,
title = "The Added Value of Diffusion-Weighted MRI-Derived Structural Connectome in Evaluating Mild Cognitive Impairment: A Multi-Cohort Validation",
abstract = "T1-weighted MRI has been extensively used to extract imaging biomarkers and build classification models for differentiating Alzheimer's disease (AD) patients from healthy controls, but only recently have brain connectome networks derived from diffusion-weighted MRI been used to model AD progression and various stages of disease such as mild cognitive impairment (MCI). MCI, as a possible prodromal stage of AD, has gained intense interest recently, since it may be used to assess risk factors for AD. Little work has been done to combine information from both white matter and gray matter, and it is unknown how much classification power the diffusion-weighted MRI-derived structural connectome could provide beyond information available from T1-weighted MRI. In this paper, we focused on investigating whether diffusion-weighted MRI-derived structural connectome can improve differentiating healthy controls subjects from those with MCI. Specifically, we proposed a novel feature-ranking method to build classification models using the most highly ranked feature variables to classify MCI with healthy controls. We verified our method on two independent cohorts including the second stage of Alzheimer's Disease Neuroimaging Initiative (ADNI2) database and the National Alzheimer's Coordinating Center (NACC) database. Our results indicated that 1) diffusion-weighted MRI-derived structural connectome can complement T1-weighted MRI in the classification task; 2) the feature-rank method is effective because of the identified consistent T1-weighted MRI and network feature variables on ADNI2 and NACC. Furthermore, by comparing the top-ranked feature variables from ADNI2, NACC, and combined dataset, we concluded that cross-validation using independent cohorts is necessary and highly recommended.",
keywords = "Alzheimer's disease, brain network, diffusion MRI, feature extraction, mild cognitive impairment, multiple cohorts",
author = "Qi Wang and Lei Guo and Thompson, {Paul M.} and Jack, {Clifford R.} and Hiroko Dodge and Liang Zhan and Jiayu Zhou",
note = "Funding Information: The ADNI dataset collection and sharing for this project was funded by the Alzheimer{\textquoteright}s Disease Neu-roimaging Initiative (ADNI) (National Institutes of Health Grant U01 AG024904) and DOD ADNI (Department of Defense award number W81XWH-12-2-0012). ADNI is funded by the National Institute on Aging, the National Institute of Biomedical Imaging and Bioengineering, and through generous contributions from the following: AbbVie, Alzheimer{\textquoteright}s Association; Alzheimer{\textquoteright}s Drug Discovery Foundation; Araclon Biotech; BioClinica, Inc.; Biogen; Bristol-Myers Squibb Company; CereSpir, Inc.; Cogstate; Eisai Inc.; Elan Pharmaceuticals, Inc.; Eli Lilly and Company; EuroImmun; F. Hoffmann-La Roche Ltd and its affiliated company Genentech, Inc.; Fujirebio; GE Healthcare; IXICO Ltd.; Janssen Alzheimer Immunotherapy Research & Development, LLC.; Johnson & Johnson Pharmaceutical Research & Development LLC.; Lumosity; Lund-beck; Merck & Co., Inc.; Meso Scale Diagnostics, LLC.; NeuroRx Research; Neurotrack Technologies; Novartis Pharmaceuticals Corporation; Pfizer Inc.; Piramal Imaging; Servier; Takeda Pharmaceutical Company; and Transition Therapeutics. The Canadian Institutes of Health Research is providing funds to support ADNI clinical sites in Canada. Private sector contributions are facilitated by the Foundation for the National Institutes of Health (http://www.fnih.org). The grantee organization is the Northern California Institute for Research and Education, and the study is coordinated by the Alzheimer{\textquoteright}s Therapeutic Research Institute at the University of Southern California. ADNI data are disseminated by the Laboratory for Neuro Imaging at the University of Southern California. Funding Information: This study is funded in part by US Office of Naval Research (N00014-14-1-0631 and N00014-17-1-2265 to JZ), National Science Foundation (IIS-1749940, IIS-1565596 and IIS-1615597 to JZ), National Institute of Biomedical Imaging and Bioengineering (U54 EB020403 to PMT), National Institute on Aging (AG11378 and AG041851 to CRJ, P30AG053760 and P30AG008017 to HD, AG056782 to LZ). We also thank NACC staff for help with the NACC data. Funding Information: The NACC database is funded by NIA/NIH Grant U01 AG016976. NACC data are contributed by the NIA funded ADCs: P30 AG019610 (PI Eric Reiman, MD), P30 AG013846 (PI Neil Kowall, MD), P50 AG008702 (PI Scott Small, MD), P50 AG025688 (PI Allan Levey, MD, PhD), P50 AG047266 (PI Todd Golde, MD, PhD), P30 AG010133 (PI Andrew Saykin, PsyD), P50 AG005146 (PI Marilyn Albert, PhD), P50 AG005134 (PI Bradley Hyman, MD, PhD), P50 AG016574 (PI Ronald Petersen, MD, PhD), P50 AG005138 (PI Mary Sano, PhD), P30 AG008051 (PI Steven Ferris, PhD), P30 AG013854 (PI M. Marsel Mesulam, MD), P30 AG008017 (PI Jeffrey Kaye, MD), P30 AG010161 (PI David Bennett, MD), P50 AG047366 (PI Victor Hen-derson, MD, MS), P30 AG010129 (PI Charles DeCarli, MD), P50 AG016573 (PI Frank LaFerla, PhD), P50 AG016570 (PI Marie-Francoise Ches-selet, MD, PhD), P50 AG005131 (PI Douglas Galasko, MD), P50 AG023501 (PI Bruce Miller, MD), P30 AG035982 (PI Russell Swerdlow, MD), P30 AG028383 (PI Linda Van Eldik, PhD), P30 AG010124 (PI John Trojanowski, MD, PhD), P50 AG005133 (PI Oscar Lopez, MD), P50 AG005142 (PI Helena Chui, MD), P30 AG012300 (PI Roger Rosenberg, MD), P50 AG005136 (PI Thomas Mon- tine, MD, PhD), P50 AG033514 (PI Sanjay Asthana, MD, FRCP), P50 AG005681 (PI John Morris, MD), and P50 AG047270 (PI Stephen Strittmatter, MD, PhD). Publisher Copyright: {\textcopyright} 2018 - IOS Press and the authors. All rights reserved.",
year = "2018",
doi = "10.3233/JAD-171048",
language = "English (US)",
volume = "64",
pages = "149--169",
journal = "Journal of Alzheimer's Disease",
issn = "1387-2877",
publisher = "IOS Press",
number = "1",
}